首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Soluble gamma-globin chains were expressed in bacteria and purified to assess the mechanism of gamma- and alpha-chain assembly to form Hb F. Formation of Hb F in vitro following incubation of equimolar mixtures of gamma and alpha chains was about 4 x 10(5)-fold slower than assembly of alpha and beta chains to form Hb A in vitro. Results of assembly for gamma(116Ile-->His) and gamma(112Thr-->Asp) chains with alpha chains were similar to that of beta chains, whereas assembly of gamma(112Thr-->Cys) and alpha chains was similar to wild type gamma chains, indicating that amino acid differences at alpha1beta1 and alpha1gamma1 interaction sites between gamma116 Ile and beta116 His are responsible for the different assembly rates in vitro in the formation of Hb F and Hb A. Homoassembly in vitro of individual gamma chains as assessed by size-exclusion chromatography shows that gamma and gamma(112Thr-->Cys) chains form stable dimers like alphabeta and alphagamma that do not dissociate readily into monomers like beta chains. In contrast, gamma(116Ile-->His) chains form monomers and dimers upon dilution. These results are consistent with the slower assembly rate in vitro of gamma and gamma(112Thr-->Cys) with alpha chains, whereas the faster rate of assembly of gamma(116Ile-->His) and gamma(112Thr-->Asp) chains with alpha chains, like beta chains, may be caused by dissociation to monomers. These results suggest that dissociation of gamma(2) dimers to monomers limits formation of Hb F in vitro. However, yields of soluble Hb F expressed in bacteria were similar to Hb A, and no unassembled alpha and gamma chains were detected. These results indicate that gamma chains assemble in vivo with alpha chains prior to forming stable gamma(2) dimers, possibly binding to alpha chains as partially folded nascent gamma-globin chains prior to release from polyribosomes.  相似文献   

2.
Chang CK  Simplaceanu V  Ho C 《Biochemistry》2002,41(17):5644-5655
Substitutions of Asn, Glu, and Leu for Gln at the beta131 position of the hemoglobin molecule result in recombinant hemoglobins (rHbs) with moderately lowered oxygen affinity and high cooperativity compared to human normal adult hemoglobin (Hb A). The mutation site affects the hydrogen bonds present at the alpha(1)beta(1)-subunit interface between alpha103His and beta131Gln as well as that between alpha122His and beta35Tyr. NMR spectroscopy shows that the hydrogen bonds are indeed perturbed; in the case of rHb (beta131Gln --> Asn) and rHb (beta131Gln --> Leu), the perturbations are propagated to the other alpha(1)beta(1)-interface H-bond involving alpha122His and beta35Tyr. Proton exchange measurements also detect faster exchange rates for both alpha(1)beta(1)-interface histidine side chains of the mutant rHbs in 0.1 M sodium phosphate buffer at pH 7.0 than for those of Hb A under the same conditions. In addition, the same measurements in 0.1 M Tris buffer at pH 7.0 show a much slower exchange rate for mutant rHbs and Hb A. One of the mutants, rHb (beta131Gln --> Asn), shows the conformational exchange of its interface histidines, and exchange rate measurements have been attempted. We have also conducted studies on the reactivity of the SH group of beta93Cys (a residue located in the region of the alpha(1)beta(2)-subunit interface) toward p-mercuribenzoate, and our results show that low-oxygen-affinity rHbs have a more reactive beta93Cys than Hb A in the CO form. Our results indicate that there is communication between the alpha(1)beta(1)- and alpha(1)beta(2)-subunit interfaces, and a possible communication pathway for the cooperative oxygenation of Hb A that allows the alpha(1)beta(1)-subunit interface to modulate the functional properties in conjunction with the alpha(1)beta(2) interface is proposed.  相似文献   

3.
The amino acid sequence of the alpha and beta chains from the major hemoglobin component (HbA) of Australian Magpie Goose (Anseranas semipalmata) is given. The minor component with the alpha D chains was detected, but only found in low concentrations. By homologous comparison, Greylag Goose hemoglobin (Anser anser) and Australian Magpie Goose alpha chains differ by 13 amino acids or 17 nucleotide (4 two point mutations) exchanges, beta chains by 6 exchanges. Seven alpha 1 beta 1 contacts are modified by substitutions in positions alpha 30-(B11)Glu leads to Gln, alpha 34(B15)Thr leads to Gln, alpha 35(B16)-Ala leads to Thr, alpha 36(B17)Tyr leads to Phe, beta 55(D6)Leu leads to Ile, beta 119(GH2)Ala leads to Ser and beta 125(H3)Glu leads to Asp. Further, one alpha 1 beta 2 contact point was changed in beta 39(C5)Gln leads to Glu. Mutation in this position, except in two abnormal human hemoglobins, was not found in any species. Amino acid exchanges between hemoglobin of Australian Magpie Goose and other birds are discussed.  相似文献   

4.
Adachi K  Ding M  Wehrli S  Reddy KS  Surrey S  Horiuchi K 《Biochemistry》2003,42(15):4476-4484
Hb S (alpha(2)beta(2)(6Glu-->Val)) forms polymers, while Hb C-Harlem (alpha(2)beta(2)(6Glu-->Val,73Asp-->Asn)) forms crystals upon oversaturation. Since the only difference between the two is the beta73 amino acid, it follows that this site is a critical determinant in promoting either polymerization or crystallization. Beta73 Asp in Hb S forms a hydrogen bond with beta4 Thr, while beta73 Asn in Hb C-Harlem may inhibit this interaction as well as increase the hydrophobicity at the EF helix beta6 Val acceptor sites. Two new beta73 Hb S variants (beta73 His and Leu) were constructed and analyzed to define other amino acids facilitating formation of Hb S-like polymers versus Hb C-Harlem-like crystals. The two variants that were chosen were expected to either (1) enhance formation of the beta73-beta4 hydrogen bond (beta73 His) or (2) inhibit it and increase the hydrophobicity of the EF helix beta6 Val acceptor sites (beta73 Leu). beta73 His Hb S formed fibers but at a lower concentration than Hb S, while beta73 Leu Hb S formed crystals but at a higher concentration than Hb C-Harlem. The solubility of beta73 His Hb S was (1)/(7) of that of Hb S, while the solubility of beta73 Leu Hb S was similar to that of Hb C-Harlem. The delay time prior to polymer or crystal formation depended on Hb concentration. The delay time for beta73 His Hb S was 10(5)-fold shorter than that for Hb S, while that for beta73 Leu Hb S was 10(5)-fold longer in 1.0 M phosphate buffer. NMR results indicate beta73 amino acid changes induce alteration in the beta-chain heme pocket region, while CD results indicate no change in the helical content of the variants. These results suggest that enhancing the beta73-beta4 hydrogen bond and/or induced changes in the heme pocket by the beta73 Asp to His change facilitate formation of Hb S-like fibers. Our results also suggest that removal of the beta73-beta4 hydrogen bond and enhancing the hydrophobicity of the EF helix beta6 Val acceptor sites by the beta73 Asp to Leu or Asn changes delay nuclei formation and facilitate formation of Hb C-Harlem-like crystals.  相似文献   

5.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

6.
In Hb Warsaw Val replaces the Phe normally present at the heme contact position beta 42 (CD1). This variant is unstable, and it readily undergoes methemoglobin formation. In DEAE-cellulose chromatography, the variant hemoglobin co-eluted with Hb A; a partially heme-depleted fraction of the variant, representing 5-6% of the total hemoglobin, eluted separately and in pure form. The heme replete form of Hb Warsaw exhibited decreased oxygen affinity with a normal Bohr effect and normal cooperativity and interaction with 2,3-diphosphoglycerate (DPG). The heme-depleted Hb Warsaw had a higher oxygen affinity than that of Hb A, decreased cooperativity and 2,3-DPG interaction, and a very low alkaline Bohr effect. Gel filtration of the heme-depleted form showed it to exist entirely as alpha beta dimers. Globin chain synthesis by Hb Warsaw-containing reticulocytes followed a balanced alpha/beta ratio. In short-term synthesis experiments, a major portion of incorporated radiolabeled L-leucine was recovered from the dimeric, heme-depleted Hb Warsaw fraction, suggesting that subunit association precedes the incorporation of heme into the beta subunits in the post-synthetic assembly of this hemoglobin. Structural analysis of deoxyhemoglobin containing roughly equal proportions of normal and variant beta chains showed that the replacement leaves a cavity next to the heme that is large enough to hold a water molecule, which may account for the instability of Hb Warsaw. The heme and the pyrrol nearest to ValCD1 tilt into the cavity. The resulting increase in the tilt of the proximal histidine relative to the heme plane, coupled with a possible stretching of the Fe-N epsilon bond may account for the low oxygen affinity.  相似文献   

7.
A murine model of sickle cell disease was tested by studying the polymerization of hybrid hemoglobin tetramers between alpha mouse and human beta S or beta S Antilles chains were prepared from Hb S Antilles, which was a new sickling hemoglobin inducing a sickle cell syndrome more severe than Hb S. The hybrid molecules did not polymerize in solution, indicating that the mouse alpha chains inhibited fiber formation. Consequently, a mouse model for sickle cell disease requires the transfer and expression of both alpha and beta S or beta S Antilles genes.  相似文献   

8.
We undertook this project to clarify whether hemoglobin (Hb) dimers have a high affinity for oxygen and cooperativity. For this, we prepared stable Hb dimers by introducing the mutation Trp-->Glu at beta37 using our Escherichia coli expression system at the alpha1beta2 interface of Hb, and analyzed their molecular properties. The mutant hybrid Hbs with a single oxygen binding site were prepared by substituting Mg(II) protoporphyrin for ferrous heme in either the alpha or beta subunit, and the oxygen binding properties of the free dimers were investigated. Molecular weight determination of both the deoxy and CO forms showed all these molecules to be dimers in the absence of IHP at different protein concentrations. Oxygen equilibrium measurements showed high affinity and non-cooperative oxygen binding for all mutant Hb and hybrid Hb dimers. However, EPR results on the [alpha(N)(Fe-NO)beta(M)(Mg)] hybrid showed some alpha1beta1 interactions. These results provide some clues as to the properties of Hb dimers, which have not been studied extensively owing to practical difficulties in their preparation.  相似文献   

9.
The hemoglobin of Liophis miliaris has unusual properties. The hemoglobin is dimeric in the oxy form, and the cooperativity of O2 binding is very low, but both the Bohr effect and cooperativity are greatly enhanced in the presence of ATP (Matsuura, M. S. A., Ogo, S. H., and Focesi, A., Jr. (1987) Comp. Biochem. Physiol. 86A, 683-687). Four unique chains (2 alpha, 2 beta) can be isolated from the hemolysate. The amino acid sequences of one alpha and one beta chain have been determined in an effort to understand the functional properties. Comparison of the sequences with those of the alpha and beta chains of human Hb shows the following. (i) All 7 of the residues in the beta chain normally conserved in globins are identical to those of the human chain: Gly(B6), Phe(CD1), His(E7), Leu(F4), His(F8), Lys(H10), and Tyr(HC2), except that the distal His(E7) has been replaced by Gln in the alpha chain. (ii) All heme contact residues in the beta chain are identical with those in the human chain, but two differences are present in the alpha chain: the distal His(E7) is replaced by Gln and Met(B13) by Leu. (iii) All residues that form the binding site for organic phosphates are identical to those in human Hb. (iv) The major residues that contribute to the normal Bohr effect in human Hb, Asp-beta 94, His-beta 146, and Val-alpha 1 are conserved. (v) All beta chain residues at the alpha 1 beta 2 interface are identical with those in the human chain except two: Glu(G3)----Val and Glu(CD2)----Thr; these differences in charged residues may explain the dissociation to dimers. (vi) The 23 residues of the alpha chain in the alpha 1 beta 2 contact region are identical with those of the human chain except three: Phe(B14)----Leu, Thr(C3)----Gln and Pro(CD2)----Ser. (vii) A total of 17 differences occur at the alpha 1 beta 1 interface, 11 in the alpha chain and 6 in the beta chain.  相似文献   

10.
A spin label attached to a propionic acid group of the heme has been used to probe the heme environment of the alpha and beta chains of hemoglobin in both the subunit and tetrameric forms. The electron paramagnetic resonance (EPR) studies of hemoglobin hybrids in which the spin label is attached to either the alpha- or beta-heme (alpha2SLbeta 2 or alpha2beta2SL) and spin-labeled isolated chains (alphaSL and betaSL) show that: 1) alpha- and beta-hemes have different environments in the tetrameric forms of oxy-, deoxy-, and methemoglobins as well as in isolated single chains; 2) when isolated subunits associate to form hemoglobin tetramers, the environment of the alpha-heme changes more drastically than that of the beta-heme; 3) upon deoxygenation of hemoglobin, the structure in the vicinity of the alpha-heme changes more drastically than that of the beta-heme; and 4) upon the addition of organic phosphates to methemoglobin, the change in the spin state of the heme irons mainly arises from beta-heme. The results demonstrate conclusively that the alpha and the beta subunits of hemoglobin are structurally nonequivalent as are their structural changes as the result of ligation. The relationship of EPR spectrum and structure of hemoglobin is discussed.  相似文献   

11.
The primary structures of the hemoglobins Hb A, Hb A', Hb D and Hb D' of Rüppell's Griffon (Gyps rueppellii), which can fly as high as 11,300 m, are presented. The globin chains were separated on CM-Cellulose in 8M urea buffers, the four hemoglobin components by FPLC in phosphate buffers. The amino-acid sequences of five globin chains were established by automatic Edman degradation of the globin chains and of the tryptic peptides in liquid-phase and gas-phase sequenators. The sequences are compared with those of other Falconiformes. A new molecular pattern for survival at extreme altitudes is presented. For the first time four hemoglobins are found in blood of a bird; they show identical beta-chains and differ in the alpha A- and alpha D-chains by only one replacement. These four hemoglobins cause a gradient in oxygen affinities. The two main components Hb A and Hb A' differ at position alpha 34 Thr/Ile. In case of Ile as found in Hb A' an alpha 1 beta 1-interface is interrupted raising oxygen affinity compared to Hb A. In addition the hemoglobins of the A- and D-groups differ at position alpha 38 Pro or Gln/Thr (alpha 1 beta 2-interface). Expression of Gln in Hb D/D' raises the oxygen affinity of these components compared to Hb A/A' by destabilization of the deoxy-structure. The physiological advantage lies in the functional interplay of four hemoglobin components. Three levels of affinity are predicted: low affinity Hb A, Hb A' of intermediate affinity, and high affinity Hb D/D'. This cascade tallies exactly with oxygen affinities measured in the isolated components and predicts oxygen transport by the composite hemoglobins over an extended range of oxygen affinities. It is contended that the mechanisms of duplication of the alpha-genome (creating four hemoglobins) and of nucleotide replacements (creating different functional properties) are responsible for this remarkable hypoxic tolerance to 11,300 m. Based on this pattern the hypoxic tolerances of other vultures are predicted.  相似文献   

12.
Hemoglobin (Hb) Chico (Lys beta 66----Thr at E10) has a diminished oxygen affinity (Shih, D. T.-b., Jones, R. T., Shih, M. F.-C., Jones, M. B., Koler, R. D., and Howard, J. (1987) Hemoglobin 11, 453-464). Our studies show that its P50 is about twice that of Hb A and that its cooperativity, anion, and Bohr effects between pH 7 and 8 are normal. The Bohr effect above pH 8 is somewhat reduced, indicating a small but previously undocumented involvement of the ionic bond formed by Lys beta 66 in the alkaline Bohr effect. Since the oxygen affinity of the alpha-hemes is likely to be normal, that of the beta-hemes in the tetramer is likely to be reduced by the equivalent of 1.2 kcal/mol beta-heme in binding energy. Remarkably, both initial and final stages of oxygen binding to Hb Chico are of lowered affinity relative to Hb A under all conditions examined. The isolated beta chains also show diminished oxygen affinity. In T-state Hb A, Lys(E10 beta) forms a salt bridge with one of the heme propionates, but comparison with other hemoglobin variants shows that rupture of this bridge cannot be the cause of the low oxygen affinity. X-ray analysis of the deoxy structure has now shown that Thr beta 66 either donates a hydrogen bond to or accepts one from His beta 63 via a bridging water molecule. This introduces additional steric hindrance to ligand binding to the T-state that results in slower rates of ligand binding. We measured the O2/CO partition coefficient and the kinetics of oxygen dissociation and carbon monoxide binding and found that lowered O2 and CO affinity is also exhibited by the R-state tetramers and the isolated beta chains of Hb Chico.  相似文献   

13.
Jin Y  Nagai M  Nagai Y  Nagatomo S  Kitagawa T 《Biochemistry》2004,43(26):8517-8527
The alpha-abnormal hemoglobin (Hb) M variants show physiological properties different from the beta-abnormal Hb M variants, that is, extremely low oxygen affinity of the normal subunit and extraordinary resistance to both enzymatic and chemical reduction of the abnormal met-subunit. To get insight into the contribution of heme structures to these differences among Hb M's, we examined the 406.7-nm excited resonance Raman (RR) spectra of five Hb M's in the frequency region from 1700 to 200 cm(-1). In the high-frequency region, profound differences between met-alpha and met-beta abnormal subunits were observed for the in-plane skeletal modes (the nu(C=C), nu(37), nu(2), nu(11), and nu(38) bands), probably reflecting different distortions of heme structure caused by the out-of-plane displacement of the heme iron due to tyrosine coordination. Below 900 cm(-1), Hb M Iwate [alpha(F8)His --> Tyr] exhibited a distinct spectral pattern for nu(15), gamma(11), delta(C(beta)C(a)C(b))(2,4), and delta(C(beta)C(c)C(d))(6,7) compared to that of Hb M Boston [alpha(E7)His --> Tyr], although both heme irons are coordinated by Tyr. The beta-abnormal Hb M variants, namely, Hb M Hyde Park [beta(F8)His --> Tyr], Hb M Saskatoon [beta(E7)His --> Tyr], and Hb M Milwaukee [beta(E11)Val --> Glu], displayed RR band patterns similar to that of metHb A, but with some minor individual differences. The RR bands characteristic of the met-subunits of Hb M's totally disappeared by chemical reduction, and the ferrous heme of abnormal subunits was no longer bonded with Tyr or Glu. They were bonded to the distal (E7) or proximal (F8) His, and this was confirmed by the presence of the nu(Fe-His) mode at 215 cm(-1) in the 441.6-nm excited RR spectra. A possible involvement of heme distortion in differences of reducibility of abnormal subunits and oxygen affinity of normal subunits is discussed.  相似文献   

14.
The commercial feasibility of recombinant human Hb (rHb) as an O(2) delivery pharmaceutical is limited by the production yield of holoprotein in E. coli. Currently the production of rHb is not cost effective for use as a source in the development of third and fourth generation Hb-based oxygen carriers (HBOCs). The major problems appear to be aggregation and degradation of apoglobin at the nominal expression temperatures, 28-37 degrees C, and the limited amount of free heme that is available for holohemoglobin assembly. One approach to solve the first problem is to inhibit apoglobin precipitation by a comparative mutagenesis strategy to improve apoglobin stability. alpha Gly15 to Ala and beta Gly16 to Ala mutations have been constructed to increase the stability of the alpha helices of both subunits of HbA, based on comparison with the sequences of the more stable sperm whale hemoglobin subunits. Fetal hemoglobin is also known to be more stable than human HbA, and sequence comparisons between human beta and gamma (fetal Hb) chains indicate several substitutions that stabilize the alpha1beta1 interface, one of which, beta His116 to Ile, increases resistance to denaturation and enhances expression in E. coli. These favorable effects of enhanced globin stability can be augmented by co-expression of bacterial membrane heme transport systems to increase the rate and extent of heme uptake through the bacterial cell membranes. The combination of increased apoglobin stability and active heme transport appear to enhance holohemoglobin production to levels that may make rHb a plausible starting material for all extracellular Hb-based oxygen carriers.  相似文献   

15.
Replacement of valine by tryptophan or tyrosine at position alpha96 of the alpha chain (alpha96Val), located in the alpha(1)beta(2) subunit interface of hemoglobin leads to low oxygen affinity hemoglobin, and has been suggested to be due to the extra stability introduced by an aromatic amino acid at the alpha96 position. The characteristic of aromatic amino acid substitution at the alpha96 of hemoglobin has been further investigated by producing double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp). r Hb (alpha42Tyr --> Phe) is known to exhibit almost no cooperativity in binding oxygen, and possesses high oxygen affinity due to the disruption of the hydrogen bond between alpha42Tyr and beta99Asp in thealpha(1)beta(2) subunit interface of deoxy Hb A. The second mutation, alpha96Val -->Trp, may compensate the functional defects of r Hb (alpha42Tyr --> Phe), if the stability due to the introduction of trypophan at the alpha 96 position is strong enough to overcome the defect of r Hb (alpha42Tyr --> Phe). Double mutant r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) exhibited almost no cooperativity in binding oxygen and possessed high oxygen affinity, similarly to that of r Hb (alpha42Tyr --> Phe). (1)H NMR spectroscopic data of r Hb (alpha42Tyr --> Phe, alpha96Val --> Trp) also showed a very unstable deoxy-quaternary structure. The present investigation has demonstrated that the presence of the crucible hydrogen bond between alpha 42Tyr and beta 99Asp is essential for the novel oxygen binding properties of deoxy Hb (alpha96Val --> Trp) .  相似文献   

16.
Isolated beta chains from human adult hemoglobin at millimolar concentration are mainly associated to form beta 4 tetramers. We were able to obtain relevant two-dimensional proton nuclear magnetic resonance (NMR) spectra of such supermolecular complexes (Mr approximately 66,000) in the carboxylated state. Analysis of the spectra enabled us to assign the major part of the proton resonances corresponding to the heme substituents. We also report assignments of proton resonances originating from 12 amino acid side chains mainly situated in the heme pocket. These results provide a basis for a comparative analysis of the tertiary heme structure in isolated beta(CO) chains in solution and in beta(CO) subunits of hemoglobin crystals. The two structures are generally similar. A significantly different position, closer to the heme center, is predicted by the NMR for Leu-141 (H19) in isolated beta chains. Comparison of the assigned resonances of conserved amino acids in alpha chains, beta chains and sperm whale myoglobin indicates a close similarity of the tertiary heme pocket structure in the three homologous proteins. Significant differences were noted on the distal heme side, at the position of Val-E11, and on Leu-H19 and Phe-G5 position on the proximal side.  相似文献   

17.
The crystal structure of a high oxygen affinity species of hemoglobin, bar-headed goose hemoglobin in deoxy form, has been determined to a resolution of 2.8 A. The R and R(free) factor of the model are 0.197 and 0.243, respectively. The structure reported here is a special deoxy state of hemoglobin and indicates the differences in allosteric mechanisms between the goose and human hemoglobins. The quaternary structure of the goose deoxy hemoglobin shows obvious differences from that of human deoxy hemoglobin. The rotation angle of one alphabeta dimer relative to its partner in a tetramer molecule from the goose oxy to deoxy hemoglobin is only 4.6 degrees, and the translation is only 0.3 A, which are much smaller than those in human hemoglobin. In the alpha(1)beta(2) switch region of the goose deoxy hemoglobin, the imidazole ring of His beta(2)97 does not span the side-chain of Thr alpha(1)41 relative to the oxy hemoglobin as in human hemoglobin. And the tertiary structure changes of heme pocket and FG corner are also smaller than that in human hemoglobin. A unique mutation among avian and mammalian Hbs of alpha119 from proline to alanine at the alpha(1)beta(1 )interface in bar-headed goose hemoglobin brings a gap between Ala alpha119 and Leu beta55, the minimum distance between the two residues is 4.66 A. At the entrance to the central cavity around the molecular dyad, some residues of two beta chains form a positively charged groove where the inositol pentaphosphate binds to the hemoglobin. The His beta146 is at the inositol pentaphosphate binding site and the salt-bridge between His beta146 and Asp beta94 does not exist in the deoxy hemoglobin, which brings the weak chloride-independent Bohr effect to bar-headed goose hemoglobin.  相似文献   

18.
The complete primary structure of the hemoglobin from the Mandrill (Mandrillus sphinx, Primates) is presented. This hemoglobin comprises two components in approximately equal amounts (HB I and Hb II). The alpha-chains differ in positions 5 (A3) and 9 (A7) having Ala and Asn in the alpha I-chains and Asp and His in the alpha II-chains. The beta-chains are identical. The components could be separated by DEAE-Sephacel chromatography. The globin chains were obtained by carboxymethylcellulose chromatography or high-performance liquid chromatography. The sequences were established by automatic liquid or gas phase Edman degradation of the chains and their tryptic peptides. The alpha-chains show 9 and 11 and the beta-chains 8 exchanges compared with the corresponding human chains, respectively. In the beta-chains one alpha 1/beta 1- and one alpha 1/beta 2-contact is substituted. A comparison of the primary structures of the Mandrill hemoglobin chains with those of other species of the Cercopithecidae family shows that Mandrillus sphinx should be placed between Cercopithecus and Macaca on one side and Papio, Theropithecus and Cercocebus on the other.  相似文献   

19.
A seminal difference exists between the two types of chains that constitute the tetrameric hemoglobin in vertebrates. While alpha chains associate weakly into dimers, beta chains self-associate into tightly assembled tetramers. While heterotetramers bind ligands cooperatively with moderate affinity, homotetramers bind ligands with high affinity and without cooperativity. These characteristics lead to the conclusion that the beta 4 tetramer is frozen in a quaternary R-state resembling that of liganded HbA. X-ray diffraction studies of the liganded beta 4 tetramers and molecular modeling calculations revealed several differences relative to the native heterotetramer at the "allosteric" interface (alpha 1 beta 2 in HbA) and possibly at the origin of a large instability of the hypothetical deoxy T-state of the beta 4 tetramer. We have studied natural and artificial Hb mutants at different sites in the beta chains responsible for the T-state conformation in deoxy HbA with the view of restoring a low ligand affinity with heme-heme interaction in homotetramers. Functional studies have been performed for oxygen equilibrium binding and kinetics after flash photolysis of CO for both hetero- and homotetramers. Our conclusion is that the "allosteric" interface is so precisely tailored for maintaining the assembly between alpha beta dimers that any change in the side chains of beta 40 (C6), beta 99 (G1), and beta 101 (G3) involved in the interface results in increased R-state behavior. In the homotetramer, the mutations at these sites lead to the destabilization of the beta 4 hemoglobin and the formation of lower affinity noncooperative monomers.  相似文献   

20.
C H Tsai  T J Shen  N T Ho  C Ho 《Biochemistry》1999,38(27):8751-8761
Using our Escherichia coli expression system, we have produced five mutant recombinant (r) hemoglobins (Hbs): r Hb (alpha V96 W), r Hb Presbyterian (beta N108K), r Hb Yoshizuka (beta N108D), r Hb (alpha V96W, beta N108K), and r Hb (alpha V96W, beta N108D). These r Hbs allow us to investigate the effect on the structure-function relationship of Hb of replacing beta 108Asn by either a positively charged Lys or a negatively charged Asp as well as the effect of replacing alpha 96Val by a bulky, nonpolar Trp. We have conducted oxygen-binding studies to investigate the effect of several allosteric effectors on the oxygenation properties and the Bohr effects of these r Hbs. The oxygen affinity of these mutants is lower than that of human normal adult hemoglobin (Hb A) under various experimental conditions. The oxygen affinity of r Hb Yoshizuka is insensitive to changes in chloride concentration, whereas the oxygen affinity of r Hb Presbyterian exhibits a pronounced chloride effect. r Hb Presbyterian has the largest Bohr effect, followed by Hb A, r Hb (alpha V96W), and r Hb Yoshizuka. Thus, the amino acid substitution in the central cavity that increases the net positive charge enhances the Bohr effect. Proton nuclear magnetic resonance studies demonstrate that these r Hbs can switch from the R quaternary structure to the T quaternary structure without changing their ligation states upon the addition of an allosteric effector, inositol hexaphosphate, and/or by reducing the temperature. r Hb (alpha V96W, beta N108K), which has the lowest oxygen affinity among the hemoglobins studied, has the greatest tendency to switch to the T quaternary structure. The following conclusions can be derived from our results: First, if we can stabilize the deoxy (T) quaternary structure of a hemoglobin molecule without perturbing its oxy (R) quaternary structure, we will have a hemoglobin with low oxygen affinity and high cooperativity. Second, an alteration of the charge distribution by amino acid substitutions in the alpha 1 beta 1 subunit interface and in the central cavity of the hemoglobin molecule can influence the Bohr effect. Third, an amino acid substitution in the alpha 1 beta 1 subunit interface can affect both the oxygen affinity and cooperativity of the oxygenation process. There is communication between the alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces during the oxygenation process. Fourth, there is considerable cooperativity in the oxygenation process in the T-state of the hemoglobin molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号