首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mantra that dietary (saturated) fat must be minimized to reduce cardiovascular disease (CVD) risk has dominated nutritional guidelines for decades. Parallel to decreasing intakes of fat and saturated fatty acids (SFA), there have been increases in carbohydrate and sugar intakes, overweight, obesity and type 2 diabetes mellitus. The “lipid hypothesis” coined the concept that fat, especially SFA, raises blood low-density lipoprotein-cholesterol and thereby CVD risk. In view of current controversies regarding their adequate intakes and effects, this review aims to summarize research regarding this heterogenic group of fatty acids and the mechanisms relating them to (chronic) systemic low-grade inflammation, insulin resistance, metabolic syndrome and notably CVD. The intimate relationship between inflammation and metabolism, including glucose, fat and cholesterol metabolism, revealed that the dyslipidemia in Western societies, notably increased triglycerides, “small dense” low-density lipoprotein and “dysfunctional” high-density lipoprotein, is influenced by many unfavorable lifestyle factors. Dietary SFA is only one of these, not necessarily the most important, in healthy, insulin-sensitive people. The environment provides us not only with many other proinflammatory stimuli than SFA but also with many antiinflammatory counterparts. Resolution of the conflict between our self-designed environment and ancient genome may rather rely on returning to the proinflammatory/antiinflammatory balance of the Paleolithic era in consonance with the 21st century culture. Accordingly, dietary guidelines might reconsider recommendations for SFA replacement and investigate diet in a broader context, together with nondietary lifestyle factors. This should be a clear priority, opposed to the reductionist approach of studying the effects of single nutrients, such as SFA.  相似文献   

2.
This review focuses on the possible association between types of fatty acids and weight change. It examines the biological plausibility underlining these associations and the evidence obtained to date from clinical trials and epidemiological studies. Animal studies have shown that dietary short- and medium-chain fatty acids compared to long-chain fatty acids appear to promote weight loss. Similarly, monounsaturated fatty acids (MUFAs) appear to favor weight loss compared to saturated fatty acids (SFAs) in human studies. The structure of fatty acids seems to affect their degree of oxidation and deposition. Although results are conflicting, human studies follow the general trend reported in animal studies. These trials suggest that some fatty acids are prone to oxidation and some others lead to fat storage when comparing isocaloric diets. For instance, n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic and docosahexaenoic acids are preferentially oxidizied to other PUFA but results remain inconsistent. Epidemiological studies concerning this issue reported that total dietary fat, which includes MUFA, PUFA, and SFA could increase the risk of obesity, but results are few and conflicting. The rising biological plausibility linking dietary fat quality and risk of obesity, together with the rather recent addition of fatty acids content in food composition tables, support the need for major epidemiological studies in that area.  相似文献   

3.
Cardiovascular disease (CVD) risk and rate of progression is determined by genetic, environmental and behavioural factors. Majority of genotype–diet–CVD phenotype research till date has focussed on the interactive impact of single nucleotide polymorphisms (SNP) and dietary fat composition, on blood lipids levels, with strong evidence of the existence of hypo- and hyper-responders. However, a recognised concern in the field of nutrigenetics is a lack of consistency between findings of different studies. This apparent lack of consistency is likely to be attributable to the impact of factors such as ethnicity and gender on the ‘size’ of nutrigenetic interactions, a clear understanding of which needs to be gained. Although not yet ready for widespread use, in the future a greater use of genetic profiling is likely to enhance current strategies of CVD prediction, and improve the design of more personalised approaches to minimise risk in the individual.  相似文献   

4.
Oxidized low-density lipoproteins (ox-LDLs) appear to play a significant role in atherogenesis. In fact, circulating ox-LDL concentrations have been recognized as a risk factor for cardiovascular disease (CVD). A higher intake of some nutrients and specific food compounds such as monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs) and flavonoids have also been associated with a lower risk of CVD. These dietary factors could be associated to a lower risk of CVD through a reduction of the atherogenicity of LDL particles through limited oxidation. Therefore, the purpose of this article is to review human clinical studies that evaluated effects of dietary antioxidant vitamins, fatty acids (MUFA, PUFA) and specific flavonoid-rich foods on LDL particle oxidation and describe potential mechanisms by which dietary factors may prevent oxidation of LDL particles. Antioxidant vitamin supplements such as alpha-tocopherol and ascorbic acid as well as beta-carotene and fish-oil supplements have not been clearly demonstrated to prevent oxidation of LDL particles. Moreover, inconsistent documented effects of flavonoid-rich food such as olive oil, tea, red wine and soy on LDL particle oxidizability may be explained by difference in variety and quantity of flavonoid compounds used among studies. However, a healthy food pattern such as the Mediterranean diet, which includes a combination of antioxidant compounds and flavonoid-rich foods, appears effective to decrease LDL particle oxidizability, which may give some insight of the cardiovascular benefits associated with the Mediterranean diet.  相似文献   

5.
Plasma levels of plasminogen activator inhibitor-1 (PAI-1) are elevated in obesity and correlate with body mass index. The increase in PAI-1 associated with obesity likely contributes to increased cardiovascular risk and may predict the development of type 2 diabetes mellitus. Although adipocytes are capable of synthesizing PAI-1, the bulk of evidence indicates that cells residing in the stromal fraction of visceral fat are the primary source of PAI-1. We hypothesized that bone marrow-derived PAI-1, e.g. derived from macrophages located in visceral fat, contributes to the development of diet-induced obesity. To test this hypothesis, male C57BL/6 wild-type mice and C57BL/6 PAI-1 deficient mice were transplanted with either PAI-1(-/-), PAI-1(+/-), or PAI-1(+/+) bone marrow. The transplanted animals were subsequently fed a high fat diet for 24 weeks. Our findings show that only the complete absence of PAI-1 protects from the development of diet-induced obesity, whereas the absence of bone marrow-derived PAI-1 protects against expansion of the visceral fat mass. Remarkably, there is a link between the PAI-1 levels, the degree of inflammation in adipose tissue, and the development of obesity. Based on these findings we suggest that bone marrow-derived PAI-1 has an effect on the development of obesity through its effect on inflammation.  相似文献   

6.

Background

Prospective studies that have examined the association between dietary magnesium intake and serum magnesium concentrations and the risk of cardiovascular disease (CVD) events have reported conflicting findings. We undertook a meta-analysis to evaluate the association between dietary magnesium intake and serum magnesium concentrations and the risk of total CVD events.

Methodology/Principal Findings

We performed systematic searches on MEDLINE, EMBASE, and OVID up to February 1, 2012 without limits. Categorical, linear, and nonlinear, dose-response, heterogeneity, publication bias, subgroup, and meta-regression analysis were performed. The analysis included 532,979 participants from 19 studies (11 studies on dietary magnesium intake, 6 studies on serum magnesium concentrations, and 2 studies on both) with 19,926 CVD events. The pooled relative risks of total CVD events for the highest vs. lowest category of dietary magnesium intake and serum magnesium concentrations were 0.85 (95% confidence interval 0.78 to 0.92) and 0.77 (0.66 to 0.87), respectively. In linear dose-response analysis, only serum magnesium concentrations ranging from 1.44 to 1.8 mEq/L were significantly associated with total CVD events risk (0.91, 0.85 to 0.97) per 0.1 mEq/L (Pnonlinearity = 0.465). However, significant inverse associations emerged in nonlinear models for dietary magnesium intake (Pnonlinearity = 0.024). The greatest risk reduction occurred when intake increased from 150 to 400 mg/d. There was no evidence of publication bias.

Conclusions/Significance

There is a statistically significant nonlinear inverse association between dietary magnesium intake and total CVD events risk. Serum magnesium concentrations are linearly and inversely associated with the risk of total CVD events.  相似文献   

7.
Although dietary fat has been associated with inflammation and cardiovascular diseases (CVD), most studies have focused on individuals with preexisting diseases. However, the role of dietary fatty acids on inflammatory pathways before the onset of any abnormality may be more relevant for identifying initiating factors and interventions for CVD prevention. We fed young male pigs one of three diets differing in n-6 and n-3 polyunsaturated fatty acids (PUFA) linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (ALA, 18:3n-3) for 30 days. Cardiac membrane phospholipid fatty acids, phospholipase A(2) (PLA(2)) isoform activities, and cyclooxygenase (COX)-1 and -2 and 5-lipoxygenase (5-LO) expression were measured. The low PUFA diet (% energy, 1.2% LA+0.06% ALA) increased arachidonic acid (AA) and decreased eicosapentaenoic acid (EPA) in heart membranes and increased Ca(2+)-independent iPLA(2) activity, COX-2 expression, and activation of 5-LO. Increasing dietary ALA while keeping LA constant (1.4% LA+1.2% ALA) decreased the heart membrane AA, increased EPA, and prevented proinflammatory enzyme activation. However, regardless of high ALA, high dietary LA (11.6% LA and 1.2% ALA) decreased EPA and led to a high heart membrane AA, and Ca(2+)-dependent cPLA(2) with a marked increase in nitrosative stress. Our results suggest that the potential cardiovascular benefit of ALA is achieved only when dietary LA is reduced concomitantly rather than fed with high LA diet. The increased nitrosative stress in the unstressed heart with high dietary LA suggests that biomarkers of nitrosative stress may offer a useful early marker of the effects of dietary fat on oxidative tissue stress.  相似文献   

8.
Accurate assessment of fat intake is essential to examine the relationships between diet and disease risk but the process of estimating individual intakes of fat quality by dietary assessment is difficult. Tissue and blood fatty acids, because they are mainly derived from the diet, have been used as biomarkers of dietary intake for a number of years. We review evidence from a wide variety of cross-sectional and intervention studies and summarise typical values for fatty acid composition in adipose tissue and blood lipids and changes that can be expected in response to varying dietary intake. Studies in which dietary intake was strictly controlled confirm that fatty acid biomarkers can complement dietary assessment methodologies and have the potential to be used more quantitatively. Factors affecting adipose tissue and blood lipid composition are discussed, such as the physical properties of triacylglycerol, total dietary fat intake and endogenous fatty acid synthesis. The relationship between plasma lipoprotein concentrations and total plasma fatty acid composition, and the use of fatty acid ratios as indices of enzyme activity are also addressed.  相似文献   

9.
Obesity is a complex disease caused by the interaction of a myriad of genetic, dietary, lifestyle and environmental factors, which favors a chronic positive energy balance, leading to increased body fat mass. There is emerging evidence of a strong association between obesity and an increased risk of cancer. However, the mechanisms linking both diseases are not fully understood. Here, we analyze the current knowledge about the potential contribution that expanding adipose tissue in obesity could make to the development of cancer via dysregulated secretion of pro-inflammatory cytokines, chemokines and adipokines such as TNF-α, IL-6, leptin, adiponectin, visfatin and PAI-1. Dietary factors play an important role in the risk of suffering obesity and cancer. The identification of bioactive dietary factors or substances that affect some of the components of energy balance to prevent/reduce weight gain as well as cancer is a promising avenue of research. This article reviews the beneficial effects of some bioactive food molecules (n-3 PUFA, CLA, resveratrol and lipoic acid) in energy metabolism and cancer, focusing on the molecular mechanisms involved, which may provide new therapeutic targets in obesity and cancer.  相似文献   

10.
Obesity is currently a worldwide epidemic and public health burden that increases the risk for developing insulin resistance and several chronic diseases such as diabetes, cardiovascular diseases and non-alcoholic fatty liver disease. The multifactorial causes of obesity include several genetic, dietary and lifestyle variables that together result in an imbalance between energy intake and energy expenditure. Dietary approaches to limit fat intake are commonly prescribed to achieve the hypocaloric conditions necessary for weight loss. But dietary fat restriction is often accompanied by increased carbohydrate intake, which can dramatically increase endogenous fatty acid synthesis depending upon carbohydrate composition. Since both dietary and endogenously synthesized fatty acids contribute to the whole-body fatty acid pool, obesity can therefore result from excessive fat or carbohydrate consumption. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a delta-9 fatty acid desaturase that converts saturated fatty acids into monounsaturated fatty acids (MUFA) and this activity is elevated by dietary carbohydrate. Mice lacking Scd1 are protected from obesity and insulin resistance and are characterized by decreased fatty acid synthesis and increased fatty acid oxidation. In this review, we address the association of high-carbohydrate diets with increased SCD activity and summarize the current literature on the subject of SCD1 and body weight regulation.  相似文献   

11.
Studies in populations of European descent show longer plasma clot lysis times (CLT) in patients with cardiovascular disease (CVD) than in controls. No data are available on the association between CVD risk factors and fibrinolytic potential in black Africans, a group undergoing rapid urbanisation with increased CVD prevalence. We investigated associations between known CVD risk factors and CLT in black Africans and whether CLTs differ between rural and urban participants in light of differences in CVD risk.Data from 1000 rural and 1000 urban apparently healthy black South Africans (35–60 years) were cross-sectionally analysed.Increased PAI-1act, BMI, HbA1c, triglycerides, the metabolic syndrome, fibrinogen concentration, CRP, female sex and positive HIV status were associated with increased CLTs, while habitual alcohol consumption associated with decreased CLT. No differences in CLT were found between age and smoking categories, contraceptive use or hyper- and normotensive participants. Urban women had longer CLT than rural women while no differences were observed for men.CLT was associated with many known CVD risk factors in black Africans. Differences were however observed, compared to data from populations of European descent available in the literature, suggesting possible ethnic differences. The effect of urbanisation on CLT is influenced by traditional CVD risk factors and their prevalence in urban and rural communities.  相似文献   

12.
Dietary fatty acids and cardiovascular disease: an epidemiological approach   总被引:10,自引:0,他引:10  
The quality of dietary fat in relation to cardiovascular disease forms the basis of the diet-heart hypothesis. Current recommendations on dietary fat now emphasise quality rather than quantity. The focus of this review is to summarise the results from prospective cohort studies on dietary fat and cardiovascular disease outcomes. Relatively few prospective cohort studies have found an association between dietary fat quality and cardiovascular disease, partly because of limitations in estimating dietary intake. Saturated and trans fatty acids have increased cardiovascular risk in several studies. Both n-6 and n-3 polyunsaturated fatty acids have been associated with lower cardiovascular risk. Within the n-6 series, linoleic acid seems to decrease cardiovascular risk. Within the n-3 series the long-chain fatty acids (eicosapentaenoic and docosahexaenoic acids) are associated with decreased risk for especially fatal coronary outcomes, whereas the role of alpha-linolenic acid is less clear. Dietary fat quality also influences the activity of enzymes involved in the desaturation of fatty acids in the body. Serum desaturase indices have been consistently associated with adverse cardiovascular outcomes. Data from metabolic and clinical studies reinforce findings from observational studies supporting recommendations to replace saturated and trans fat with unsaturated fat in the prevention of cardiovascular disease.  相似文献   

13.
Risk factors for coronary heart disease (CHD), including prethrombotic changes in hemostasis, cluster with the insulin resistance (IR) syndrome. The aim of the present study was to investigate to what extent the relation between IR and hemostatic risk factors is due to shared genes or environmental factors. Multivariate genetic analysis was performed using a total of 314 (107 monozygotic and 207 dizygotic) twin pairs on IR assessed by HOMA, fibrinogen, plasminogen activator inhibitor (PAI-1), tissue plasminogen activator (tPA), factor VIII (FVIII), von Willebrand factor (vWF) and factor XIII B-subunit. The relationship between IR and the 6 hemostatic factors could best be explained by an independent pathway model consisting of 2 common genetic factors, one of which influenced IR and all hemostatic factors, and 3 common environmental factors, each representing the shared variance between IR and different aspects of the hemostatic system. Genetic correlations between IR and hemostatic proteins were larger than their environmental counterparts. Since IR and prethrombotic changes are features of both diabetes and CHD, the finding of one set of pleiotropic genes warrants the identification of these common pathways which may provide new avenues for treatment and prevention of both diabetes and CHD.  相似文献   

14.
Fat cell function and fibrinolysis.   总被引:3,自引:0,他引:3  
Plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of plasminogen activators and may be the principal regulator of plasminogen activation in vivo. PAI-1 levels are elevated in insulin-resistant subjects and are associated with an increased risk of atherothrombosis. After adjustment for metabolic parameters, increased PAI-1 levels were no longer considered as a cardiovascular risk factor. The mechanisms underlying the strong association between PAI-1 levels and the metabolic disturbances found in insulin resistance are still not understood. Several studies have suggested that visceral adipose tissue may be a major source of PAl-1. Accordingly, adipose tissue PAI-1 production particularly that from visceral fat, was found to be elevated in obese human subjects. Within human adipose tissue, stromal cells appear to be the main cells involved in PAI-1 synthesis. This review discusses the potential mechanisms linking adipose tissue to plasma PAI-1 levels such as the intervention of cytokines (TNFalpha and TGFbeta), free fatty acids and hormones (insulin and glucocorticoids). Moreover alteration of adipose tissue cellular composition induced by the modulation of PAI-1 expression opens a novel field of interest.  相似文献   

15.
16.
This cross-sectional study evaluated the relationship of physical fitness, hormone replacement therapy (HRT), and hemostatic profiles at rest and after an acute bout of maximal exercise in 48 healthy postmenopausal women. Subjects were categorized by fitness and HRT user status into four groups: unfit nonusers, fit nonusers, unfit users, and fit users. Fibrinolytic variables tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) activity, and antigen and prothrombin fragment 1 + 2, a molecular marker of in vivo thrombin generation, were measured before and after maximal exercise. Fibrinogen was also measured at rest. Higher tPA and lower PAI-1 activities (P <0.05) were seen in HRT users and fit groups. tPA and PAI-1 antigens were lower in HRT and fit groups (P <0.05) but not after correction for body mass index. Prothrombin fragment 1 + 2 was lower in the fit groups regardless of HRT status (P <0.05). Fibrinogen was similar in all groups. Favorable hemostatic profiles were observed in physically fit compared with unfit women, especially in HRT nonusers. Thus fitness is more strongly related to these hemostatic risk factors compared with HRT since HRT did not affect these hemostatic variables in fit postmenopausal women.  相似文献   

17.
Low plasma levels of high-density lipoprotein cholesterol (HDL-C) are identified as a risk factor for cardiovascular disease (CVD). Sexual dimorphism, however, is widely reported in both HDL-C and CVD, with the underlying explanations of these sexual differences not fully understood. HDL-C is a complex trait influenced by both genes and dietary factors. Here we examine evidence for a sex-specific effect of APOE and the macronutrient carbohydrate on HDL-C, triglycerides (TG) and apoprotein A-1 (ApoA-1) in a sample of 326 male and 423 female participants of the Strong Heart Family Study (SHFS). Using general estimating equations in SAS to account for kinship correlations, stratifying by sex, and adjusting for age, body mass index (BMI) and SHS center, we examine the relationship between APOE genotype and carbohydrate intake on circulating levels of HDL-C, TG, and ApoA-1 through a series of carbohydrate-by-sex interactions and stratified analyses. APOE-by-carbohydrate intake shows significant sex-specific effects. All males had similar decreases in HDL-C levels associated with increased carbohydrate intake. However, only those females with APOE-4 alleles showed significantly lower HDL-C levels as their percent of carbohydrate intake increased, while no association was noted between carbohydrate intake and HDL-C in those females without an APOE-4 allele. These findings demonstrate the importance of understanding sex differences in gene-by-nutrient interaction when examining the complex architecture of HDL-C variation.  相似文献   

18.
Nugent AP 《Biochimie》2005,87(1):129-132
LIPGENE is a new 5-year sixth framework EU project involving researchers from 14 EU countries. It will contribute to a reduction in the economic and social burden of the metabolic syndrome through research that will optimise the health impacts of dietary fat change. LIPGENE aims to: account for variation in genotype response to fatty acid modification; enable greater availability of food products that can enhance human health; enhance consumer awareness, and motivate adoption of dietary approaches to disease prevention. A truly integrated programme, LIPGENE incorporates human nutrition, animal nutrition, plant biotechnology, and economic and social/consumer sciences. The human nutrition packages will utilise data from an existing prospective study (SUVIMAX) to identify genotype and dietary interactions as risk factors for the metabolic syndrome. A multi-centre intervention will examine the effects of dietary fat on various risk factors for the metabolic syndrome, while molecular investigations will be supported by mechanistic and functional studies. The British Nutrition Foundation, as dissemination partners for this EU programme, is initiating a wide-reaching programme to disseminate information about the project and its findings. Further details, including lists of upcoming project-related events, are available at www.lipgene.tcd.ie and www.nutrition.org.uk/lipgene.  相似文献   

19.
Obesity increases the risk for metabolic and cardiovascular disease, and adipose tissue plays a central role in this process. Ceramide, the key intermediate of sphingolipid metabolism, also contributes to obesity-related disorders. We show that a high fat diet increased ceramide levels in the adipose tissues and plasma in C57BL/6J mice via a mechanism that involves an increase in gene expression of enzymes mediating ceramide generation through the de novo pathway (e.g. serine palmitoyltransferase) and via the hydrolysis of sphingomyelin (acid sphingomyelinase and neutral sphingomyelinase). Although the induction of total ceramide in response to the high fat diet was modest, dramatic increases were observed for C16, C18, and C18:1 ceramides. Next, we investigated the relationship of ceramide to plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of plasminogen activation and another key player in obesity. PAI-1 is consistently elevated in obesity and thought to contribute to increased artherothrombotic events and more recently to obesity-mediated insulin resistance. Interestingly, the changes in ceramide were attenuated in mice lacking PAI-1. Mechanistically, mice lacking PAI-1 were protected from diet-induced increase in serine palmitoyltransferase, acid sphingomyelinase, and neutral sphingomyelinase mRNA, providing a mechanistic link for decreased ceramide in PAI-1-/- mice. The decreases in plasma free fatty acids and adipose tumor necrosis factor-alpha in PAI-1-/- mice may have additionally contributed indirectly to improvements in ceramide profile in these mice. This study has identified a novel link between sphingolipid metabolism and PAI-1 and also suggests that ceramide may be an intermediary molecule linking elevated PAI-1 to insulin resistance.  相似文献   

20.
Serine proteinase inhibitors, including plasminogen activator inhibitor type 1 (PAI-1) and antithrombin, are key regulators of hemostatic processes such as thrombosis and wound healing. Much evidence suggests that PAI-1 can influence such processes, as well as pathological events like tumor metastasis, through its ability to directly regulate binding of blood platelets and cells to extracellular substrata. One way that PAI-1 influences these processes may be mediated through its binding to the plasma protein vitronectin. Binding to PAI-1 results in the incorporation of vitronectin into a higher order complex with a potential for multivalent interactions (Podor, T. J., Shaughnessy, S. G., Blackburn, M. N., and Peterson, C. B. (2000) J. Biol. Chem. 275, 25402-25410). In this study, evidence is provided to support this concept from studies on the effects of PAI-1-induced multimerization on the interactions of vitronectin with matrix components and cell surface receptors. By monitoring complex formation and stability over time using size-exclusion high performance liquid chromatography, a correlation is made between PAI-1-induced multimerization and enhanced cell/matrix binding properties of vitronectin. This evidence indicates that PAI-1 alters the adhesive functions of vitronectin by converting the protein via the higher order complex to a self-associated, multivalent species that is functionally distinct from the abundant monomeric form found in the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号