首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have established transgenic mice expressing the Cre recombinase under the control of the anti-Müllerian hormone (AMH) gene promoter. Cre activity and specificity were evaluated by different means. In AMH-Cre mice, expression of the Cre recombinase mRNA was confined to the testis and ovary. AMH-Cre mice were crossed with reporter transgenic lines and the offspring exhibited Cre-mediated recombination only in the testis and the ovary. In male, histochemical analysis indicated that recombination occurred in every Sertoli cells. In female, Cre-mediated recombination was restricted to granulosa cells, but the protein was not evenly active in every cells. From these results, we conclude that potentially, this transgenic line possessing AMH promoter-driven expression of the Cre recombinase is a powerful tool to delete genes in Sertoli cells only, in order to study Sertoli cell gene function during mammalian spermatogenesis.  相似文献   

2.
Endocardial cells are thought to contribute at least in part to the formation of the endocardial cushion mesenchyme. Here, we created Tie2-Cre transgenic mice, in which expression of Cre recombinase is driven by an endothelial-specific promoter/enhancer. To analyze the lineage of Cre expressing cells, we used CAG-CAT-Z transgenic mice, in which expression of lacZ is activated only after Cre-mediated recombination. We detected pan-endothelial expression of the Cre transgene in Tie2-Cre;CAG-CAT-Z double-transgenic mice. This expression pattern is almost identical to Tie2-lacZ transgenic mice. However, interestingly, we observed strong and uniform lacZ expression in mesenchymal cells of the atrioventricular canal of Tie2-Cre;CAG-CAT-Z double-transgenic mice. We also detected lacZ expression in the mesenchymal cells in part of the proximal cardiac outflow tract, but not in the mesenchymal cells of the distal outflow tract and branchial arch arteries. LacZ staining in Tie2-Cre;CAG-CAT-Z embryos is consistent with endocardial-mesenchymal transformation in the atrioventricular canal and outflow tract regions. Our observations are consistent with previously reported results from Cx43-lacZ, Wnt1-Cre;R26R, and Pax3-Cre;R26R transgenic mice, in which lacZ expression in the cardiac outflow tract identified contributions in part from the cardiac neural crest. Tie2-Cre transgenic mice are a new genetic tool for the analyses of endothelial cell-lineage and endothelial cell-specific gene targeting.  相似文献   

3.
The success of Cre-mediated conditional gene targeting depends on the specificity of Cre recombinase expression in Cre-transgenic mouse lines. As a tool to evaluate the specificity of Cre expression, we developed a reporter transgenic mouse strain that expresses enhanced green fluorescent protein (EGFP) upon Cre-mediated recombination. We demonstrate that the progeny resulting from a cross between this reporter strain and a transgenic strain expressing Cre in zygotes show ubiquitous EGFP fluorescence. This reporter strain should be useful to monitor the Cre expression directed by various promoters in transgenic mice, including mice in which Cre is expressed transiently during embryogenesis under a developmentally regulated promoter.  相似文献   

4.
We have evaluated the specificity of Cre recombinase activity in transgenic mice expressing Cre under the control of the synatonemal complex protein 1 (Sycp1) gene promoter. Sycp1Cre mice were crossed with the ROSA26 reporter line R26R, to monitor the male germ cell stage-specificity of Cre activity as well as to verify that Cre was not active previously during development of other tissues. X-gal staining detected Cre-mediated recombination only in testis. Detailed histological examination indicated that weak Cre-mediated recombination occurred as early as in zygotene spermatocytes at stage XI of the cycle of the seminiferous epithelium. Robust expression of X-gal was detected in early to mid-late spermatocytes at stages V-VIII. We conclude that this transgenic line is a powerful tool for deleting genes of interest specifically during male meiosis.  相似文献   

5.
6.
Summary: The neuron‐specific rat enolase (NSE) promoter was employed to establish transgenic mice expressing Cre recombinase in the central nervous system. Founders were crossed with dormant lacZ indicator mice and specificity as well as efficiency of Cre‐mediated transgene activation was determined by PCR and/or X‐gal staining. Whereas most transgenic lines exhibited Cre activity in early development resulting in widespread Cre activity, one line (NSE‐Cre26) expressed high levels of Cre in the developing and adult brain. With the exception of kidney, which showed occasionally low level of Cre activity, Cre recombination in double transgenics was restricted to the nervous system. Whole‐mount X‐gal staining of 9.5 dpc embryos indicated Cre‐mediated lacZ expression in forebrain, hindbrain, and along the midbrain flexure. A similar expression pattern was observed during later stages of embryogenesis (11.5–13.5 dpc). In adult mice, Cre recombinase was expressed in cerebral cortex and cerebellum and high levels of Cre‐mediated lacZ expression were observed in hippocampus, cortex, and septum. The NSE‐Cre26 transgenic mouse line thus provides a useful tool to specifically overexpress and/or inactivate genes in the developing and adult brain. genesis 31:118–125, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

7.
Transgenic mice carrying the coding sequence of the Cre recombinase, whose expression was driven by the spermatocyte-specific Pgk-2 promoter, were generated. These mice were crossed with a reporter transgenic line, which produces beta-galactosidase depending on the occurrence of loxP-mediated DNA recombination. When DNA of the offspring was analyzed by PCR and Southern blotting, signals that appear after the recombination were detectable only in the testis. Histochemical analyses revealed that beta-galactosidase was present in spermatocytes and spermatogenic cells at later differentiation stages. However, the distribution of the protein was not uniform in all spermatocytes. Analyses of genomic DNA of the next generation indicated that recombination took place in about 70% of spermatogenic cells. From these results, we concluded that this transgenic line possessing Pgk-2-driven expression of the Cre recombinase should be useful for identifying spermatogenic genes that function at or after the spermatocyte stage.  相似文献   

8.
Embryonic or neonatal lethality of mice with targeted disruption of critical genes preclude them from further characterization of specific roles of these genes during postnatal development and aging. In order to study the molecular roles of such genes in teeth, we generated transgenic mouse lines expressing bacteriophage Cre recombinase under the control of the mouse dentin sialophosphoprotein (dspp) gene promoter. The expression of Cre recombinase protein was mainly detected in the nucleus of the odontoblasts. The efficiency of Cre activity was analyzed by crossing the Dspp-Cre mice with ROSA26 reporter (R26R) mice. The offspring with both genotypes have shown specific deletion of intervening sequences flanked by loxP sites upstream of the reporter gene, thereby facilitating the expression of the beta-galactosidase (beta-gal) gene in the teeth. The activity of beta-gal was initially observed in the odontoblasts of 1-day-old mice and increased with tooth development. Almost all of the odontoblasts have shown lacZ activity by 3 weeks of age. We could not detect Cre recombinase activity in any other cells, including ameloblasts. These studies indicate that the Dspp-Cre transgenic mice will be valuable to generate odontoblast-specific gene knockout mice so as to gain insight into the molecular roles of critical genes in the odontoblasts during dentinogenesis.  相似文献   

9.
We report a transgenic mouse line that expresses Cre recombinase exclusively in podocytes. Twenty- four transgenic founders were generated in which Cre recombinase was placed under the regulation of a 2.5-kb fragment of the human NPHS2 promoter. Previously, this fragment was shown to drive beta-galactosidase (beta-gal) expression exclusively in podocytes of transgenic mice. For analysis, founder mice were bred with ROSA26 mice, a reporter line that expresses beta-gal in cells that undergo Cre recombination. Eight of 24 founder lines were found to express beta-gal exclusively in the kidney. Histological analysis of the kidneys showed that beta-gal expression was confined to podocytes. Cre recombination occurred during the capillary loop stage in glomerular development. No evidence for Cre recombination was detected in any of 14 other tissues examined.  相似文献   

10.
Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells differentiate into spermatozoa. To better understand the molecular mechanisms of the process, the Cre/loxP system has been widely utilized for conditional gene knockout in mice. In this study, we generated a transgenic mouse line that expresses Cre recombinase under the control of the 2.5 kbp of the Prolactin family 3, subfamily b, member 1 (Prl3b1) gene promoter (Prl3b1‐cre). Prl3b1 was initially reported to code for placental lactogen 2 (PL‐2) protein in placenta along with increased expression toward the end of pregnancy. PL‐2 was found to be expressed in germ cells in the testis, especially in spermatocytes. To analyze the specificity and efficiency of Cre recombinase activity in Prl3b1‐cre mice, the mice were mated with reporter R26GRR mice, which express GFP ubiquitously before and tdsRed exclusively after Cre recombination. The systemic examination of Prl3b1‐cre;R26GRR mice revealed that tdsRed‐positive cells were detected only in the testis and epididymis. Fluorescence imaging of Prl3b1‐cre;R26GRR testes suggested that Cre‐mediated recombination took place in the germ cells with approximately 74% efficiency determined by in vitro fertilization. In conclusion, our results suggest that the Prl3b1cre mice line provides a unique resource to understand testicular germ‐cell development. genesis 54:389–397, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Cre-mediated gene deletion in the mammary gland.   总被引:22,自引:1,他引:21       下载免费PDF全文
To delete genes specifically from mammary tissue using the Cre-lox system, we have established transgenic mice expressing Cre recombinase under control of the WAP gene promoter and the MMTV LTR. Cre activity in these mice was evaluated by three criteria. First, the tissue distribution of Cre mRNA was analyzed. Second, an adenovirus carrying a reporter gene was used to determine expression at the level of single cells. Third, tissue specificity of Cre activity was determined in a mouse strain carrying a reporter gene. In adult MMTV-Cre mice expression of the transgene was confined to striated ductal cells of the salivary gland and mammary epithelial cells in virgin and lactating mice. Expression of WAP-Cre was only detected in alveolar epithelial cells of mammary tissue during lactation. Analysis of transgenic mice carrying both the MMTV-Cre and the reporter transgenes revealed recombination in every tissue. In contrast, recombination mediated by Cre under control of the WAP gene promoter was largely restricted to the mammary gland but occasionally observed in the brain. These results show that transgenic mice with WAP-Cre but not MMTV-Cre can be used as a powerful tool to study gene function in development and tumorigenesis in the mammary gland.  相似文献   

12.
目的:探索将增强子应用于构建Cre转基因小鼠品系,为以条件基因敲除为基础的基因功能研究提供更多的工具。方法:通过PCR方法从小鼠的细菌人工染色体扩增UH增强子片段,构建含有Hsp68基础启动子、增强子UH、Cre重组酶基因和SV40 polyA的转基因载体pLW400,将3.3 kb的转基因片段通过显微注射导入小鼠受精卵;为了检测Cre在转基因小鼠中的表达,将转基因一代小鼠与纯合子ROSA26报告小鼠(R/R)交配,收集第14 d胚胎期(E14)的舌组织进行LacZ染色检测鉴定。结果:经鉴定,31只子代小鼠中有6只携带外源基因,整合率为19.4%;与R/+对照相比,E14期的双基因型Cre,R/+舌组织为阳性结果(蓝色)。这表明Cre基因在转基因小鼠舌组织内得到表达,并在体内介导ROSA26基因座loxP位点间的重组,且有效删除了2个loxP之间的片段,从而启动了LacZ基因的表达。结论:构建了UH增强子-Hsp68Cre的转基因小鼠,在舌肌中特异表达Cre基因,提示增强子可以被选择应用于Cre转基因小鼠的构建;为舌肌的发育和再生研究奠定了基础。  相似文献   

13.
The Cre/loxP site-specific recombination system combined with embryonic stem cell-mediated technologies has greatly expanded our capability to address normal and disease development in mammals using genetic approaches. The success of this emerging technology hinges on the production of Cre-expressing transgenic lines that provide cell type-, tissue-, or developmental stage-specific recombination between loxP sites placed in the genome. Here we describe and characterize the production of a double-reporter mouse line that provides a convenient and reliable readout of Cre recombinase activity. Throughout all embryonic and adult stages, the transgenic animal expresses the lacZ reporter gene before Cre-mediated excision occurs. Cre excision, however, removes the lacZ gene, allowing expression of the second reporter, the human alkaline phosphatase gene. This double-reporter transgenic line is able to indicate the occurrence of Cre excision in an extremely widespread manner from early embryonic to adult lineages. It will be a valuable reagent for the increasing number of investigators taking advantage of the powerful tools provided by the Cre/loxP site-specific recombinase system.  相似文献   

14.
The Cre-loxP technology allows the introduction of somatic gene alterations in a tissue and/or cell type specific manner. The development of transgenes that target Cre expression to specific cell types is a critical component in this system. Here, we describe the generation and characterization of transgenic mouse lines expressing Cre recombinase under the control of the baboon alpha-chymase promoter, designated Chm:Cre, in order to direct Cre expression specifically to mouse mast cells. Chm:Cre expression was detected in mast cells in lung and colon tissue. Cre-mediated recombination in these mice identified a population of mature tissue resident mast cells using ROSA26R reporter mice. No Cre-expression and Cre-mediated recombination was induced in in vitro generated bone marrow derived mast cells or mast cells isolated from the peritoneal cavity indicating that Cre-expression under the control of the alpha-chymase promoter is solely activated in tissue resident mast cells. These Chm:Cre transgenic mice represent a useful tool to specifically inactivate genes of interest in mast cells of these tissues.  相似文献   

15.
Conditional gene targeting using the Cre/loxP system enables specific deletion of a gene in a tissue of interest. For application of Cre-mediated recombination in pigment cells, Cre expression has to be targeted to pigment cells in transgenic mice. So far, no pigment cell-specific Cre transgenic line has been reported and we present and discuss our first results on use of Cre recombinase in pigment cells. A construct was generated where Cre recombinase is controlled by the promoter of the mouse dopachrome tautomerase (Dct) gene. The construct was functionally tested in vitro and introduced into mice. Following breeding to two reporter mouse strains, we detected Cre recombinase activity in telencephalon, melanoblasts, and retinal pigment epithelium (RPE). Our data demonstrate the feasibility of pigment cell-specific Cre/loxP-mediated recombination.  相似文献   

16.
In this study, we used the male germ cell-specific phosphoglycerate kinase 2 (Pgk2) promoter to generate Pgk2Cre transgenic mice to allow investigation of genes critically involved in meiosis. The Pgk2 promoter had been used previously to target transgene expression to spermatocytes and spermatids in several laboratories including ours. In several Cre targeting experiments using other promoters, ectopic Cre expression had been observed, but the timing and extent of this expression was not analyzed. We demonstrate that in adult mice the Pgk2Cre transgene is expressed specifically in spermatocytes and spermatids, as expected. However, in offspring from matings of Pgk2Cre mice and an H19loxP indicator strain, we discovered that recombination events had occurred in several, but not all, tissues to varying extents. The lacZ-loxP transgenic indicator strain was next used to uncover ectopic Cre expression even in single cells, which indicated that the Pgk2Cre transgene is expressed between days 11 and 15 during embryogenesis in several tissues and organs. Using an RT PCR assay we were unable to detect endogenous Pgk2 mRNA during embryogenesis or in adult tissues other than testis. In conclusion, the Pgk2 promoter is a valid choice for targeting gene expression to meiotic male germ cells, since transient ectopic expression is unlikely to have a discernable effect in most studies, but it may be inappropriate for utilization with Cre recombinase.  相似文献   

17.
BMP signaling plays pleiotropic roles in various tissues. Transgenic mouse lines that overexpress BMP signaling in a tissue-specific manner would be beneficial; however, production of each tissue-specific transgenic mouse line is labor-intensive. Here, using a Cre-loxP system, we generated a conditionally overexpressing mouse line for BMP signaling through the type I receptor ALK2 (alternatively known as AVCRI, ActRI, or ActRIA). By mating this line with Cre-expression mouse lines, Cre-mediated recombination removes an intervening floxed lacZ expression cassette and thereby permits the expression of a constitutively active form of Alk2 (caAlk2) driven by a ubiquitous promoter, CAG. Tissue specificity of Cre recombination was monitored by a bicistronically expressed EGFP following Alk2 cDNA. Increased BMP signaling was confirmed by ectopic phosphorylation of SMAD1/5/8 in the areas where Cre recombination had occurred. The conditional overexpression system described here provides versatility in investigating gene functions in a tissue-specific manner without having to generate independent tissue-specific transgenic lines.  相似文献   

18.
Loss-of-function approaches by the Cre/loxP technology have provided powerful tools for functional analyses of genes of interest expressed preferentially in a particular tissue. Here we describe the generation of transgenic mouse lines expressing Cre recombinase under the control of the promoter/enhancer unit of the gene for the alpha2 chain of collagen type I (Col1alpha2). As an expression vector, we used a P1-derived artificial chromosome (PAC), which harbors approximately 100 kb carrying the col1alpha2 gene. The improved coding sequence of the Cre recombinase was introduced to replace the first exon of col1alpha2. Cre expression was determined by immunohistochemistry and Cre-mediated onset of beta-galactosidase expression in ROSA26R-Cre reporter mice. In four analyzed transgenic lines, Cre recombinase was efficiently expressed during embryogenesis and in adult animals in cells of mesenchymal origin, such as dermal fibroblasts, mesenchymal cells of blood vessel walls, and cells in fibrous connective tissues surrounding internal organs.  相似文献   

19.
Characterization of astrocyte-specific conditional knockouts   总被引:1,自引:0,他引:1  
Conditional gene knockouts are a very powerful tool for elucidating gene function in animal physiology and behavior. To obtain cell-specific knockouts, a promoter is utilized that drives expression of Cre recombinase specifically to the cell population of interest. We describe several transgenic lines of mice that were created in an attempt to obtain astrocyte-specific gene recombination. A 2 kb fragment from the human glial fibrillary acidic protein promoter is utilized to drive expression of inducible Cre recombinase, with both the Tet-Off and tamoxifen responsive systems. We show data obtained from crosses with two Cre reporter lines, ROSA26R and an astrocyte Cre reporter created in our laboratory, to assess the cell specificity of gene recombination. Additionally, our system is shown to successfully recombine a floxed Connexin43 locus, although recombination is not as extensive as seen in crosses with reporter lines.  相似文献   

20.
Previous reports described the rat synapsin 1 promoter as primarily neuron selective. However, ectopic expression of a transgene under the rat synapsin 1 promoter was also detected in testis from some transgenic mouse lines. Here we investigate which cells within the testis express a transgene consisting of the rat synapsin 1 promoter fused with luciferase. Synapsin 1-luciferase expression vectors were introduced into HeLa cells, into TM3 cells derived from mouse testicular Leydig cells, and into one-cell embryos to make transgenic mice. Indirect immunofluorescence suggests that nontransfected TM3 cells do not express endogenous synapsin 1. TM3 stable transfectants, however, expressed luciferase under the direction of the synapsin 1 promoter, in both promoter orientations. HeLa cells displayed only low levels of activity. Transgenic mice carrying the synapsin 1-luciferase construct displayed high levels of luciferase activity in the brain, spinal cord, and testis. Enriched populations of prepuberal types A and B spermatogonia and adult Leydig cells, pachytene spermatocytes, and round spermatids prepared from transgenic mice all displayed substantial luciferase activity. Thus, the rat synapsin 1 promoter can mediate reporter gene expression in neurons and testicular cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号