首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant hormone abscisic acid (ABA) is a key regulator of seed maturation and germination and mediates adaptive responses to environmental stress. In Arabidopsis, the ABI1 gene encodes a member of the 2C class of protein serine/threonine phosphatases (PP2C), and the abi1-1 mutation markedly reduces ABA responsiveness in both seeds and vegetative tissues. However, this mutation is dominant and has been the only mutant allele available for the ABI1 gene. Hence, it remained unclear whether ABI1 contributes to ABA signaling, and in case ABI1 does regulate ABA responsiveness, whether it is a positive or negative regulator of ABA action. In this study, we isolated seven novel alleles of the ABI1 gene as intragenic revertants of the abi1-1 mutant. In contrast to the ABA-resistant abi1-1 mutant, these revertants were more sensitive than the wild type to the inhibition of seed germination and seedling root growth by applied ABA. They also displayed increases in seed dormancy and drought adaptive responses that are indicative of a higher responsiveness to endogenous ABA. The revertant alleles were recessive to the wild-type ABI1 allele in enhancing ABA sensitivity, indicating that this ABA-supersensitive phenotype results from a loss of function in ABI1. The seven suppressor mutations are missense mutations in conserved regions of the PP2C domain of ABI1, and each of the corresponding revertant alleles encodes an ABI1 protein that lacked any detectable PP2C activity in an in vitro enzymatic assay. These results indicate that a loss of ABI1 PP2C activity leads to an enhanced responsiveness to ABA. Thus, the wild-type ABI1 phosphatase is a negative regulator of ABA responses.  相似文献   

2.
The Arabidopsis ABI1 and ABI2 genes encode two protein serine/threonine phosphatases 2C (PP2C). These genes have been originally identified by the dominant mutations abi1--1 and abi2--1, which reduce the plant's responsiveness to the hormone abscisic acid (ABA). However, recessive mutants of ABI1 were recently shown to be supersensitive to ABA, which demonstrated that the ABI1 phosphatase is a negative regulator of ABA signalling. We report here the isolation and characterisation of the first reduction-of-function allele of ABI2, abi2--1R1. The in vitro phosphatase activity of the abi2--1R1 protein is approximately 100-fold lower than that of the wild-type ABI2 protein. Abi2--1R1 plants displayed a wild-type ABA sensitivity. However, doubly mutant plants combining the abi2--1R1 allele and a loss-of-function allele at the ABI1 locus were more responsive to ABA than each of the parental single mutants. These data indicate that the wild-type ABI2 phosphatase is a negative regulator of ABA signalling, and that the ABI1 and ABI2 phosphatases have overlapping roles in controlling ABA action. Measurements of PP2C activity in plant extracts showed that the phosphatase activity of ABI1 and ABI2 increases in response to ABA. These results suggest that ABI1 and ABI2 act in a negative feedback regulatory loop of the ABA signalling pathway.  相似文献   

3.
4.
Abscisic acid (ABA) plays a key role in plant responses to abiotic stress, particularly drought stress. A wide number of ABA-hypersensitive mutants is known, however, only a few of them resist/avoid drought stress. In this work we have generated ABA-hypersensitive drought-avoidant mutants by simultaneous inactivation of two negative regulators of ABA signaling, i.e. the protein phosphatases type 2C (PP2Cs) ABA-INSENSITIVE1 (ABI1) and HYPERSENSITIVE TO ABA1 (HAB1). Two new recessive loss-of-function alleles of ABI1, abi1-2 and abi1-3, were identified in an Arabidopsis (Arabidopsis thaliana) T-DNA collection. These mutants showed enhanced responses to ABA both in seed and vegetative tissues, but only a limited effect on plant drought avoidance. In contrast, generation of double hab1-1 abi1-2 and hab1-1 abi1-3 mutants strongly increased plant responsiveness to ABA. Thus, both hab1-1 abi1-2 and hab1-1 abi1-3 were particularly sensitive to ABA-mediated inhibition of seed germination. Additionally, vegetative responses to ABA were reinforced in the double mutants, which showed a strong hypersensitivity to ABA in growth assays, stomatal closure, and induction of ABA-responsive genes. Transpirational water loss under drought conditions was noticeably reduced in the double mutants as compared to single parental mutants, which resulted in reduced water consumption of whole plants. Taken together, these results reveal cooperative negative regulation of ABA signaling by ABI1 and HAB1 and suggest that fine tuning of ABA signaling can be attained through combined action of PP2Cs. Finally, these results suggest that combined inactivation of specific PP2Cs involved in ABA signaling could provide an approach for improving crop performance under drought stress conditions.  相似文献   

5.
The abi1-1 mutation blocks ABA signaling downstream of cADPR action   总被引:1,自引:0,他引:1  
Arabidopsis thaliana abscisic acid insensitive 1-1 (abi1-1) is a dominant mutant that is insensitive to the inhibition of germination and growth by the plant hormone, abscisic acid (ABA). The mutation severely decreases the catalytic activity of the ABI1 type 2C protein phosphatase (PP2C). However, the site of action of the abi1-1/ABI1 in the ABA signal transduction pathway has not yet been determined. Using single cell assays, we showed that microinjecting mutant abi1-1 protein inhibited the activation of RD29A-GUS and KIN2-GUS in response to ABA, cyclic ADP-ribose (cADPR), and Ca2+. The inhibitory effect of the mutant protein, however, was reversed by co-microinjection of an excess amount of the ABI1 protein. In transgenic Arabidopsis plants, overexpression of abi1-1 rendered the plants insensitive to ABA during germination, whereas overexpression of ABI1 did not have any apparent effect. Moreover, transgenic plants overexpressing abi1-1 were blocked in the induction of ABA-responsive genes; however, overexpression of ABI1 did not affect gene expression. Taken together, our results demonstrate that abi1-1 is likely to be a dominant negative mutation and ABI1 likely acts downstream of cADPR in the ABA-signaling pathway. Our results on ABI1 overexpression in Arabidopsis are not compatible with a negative regulatory role of this phosphatase in ABA responses.  相似文献   

6.
7.
ABI1 and ABI2 encode PP2C-type protein phosphatases and are thought to negatively regulate many aspects of abscisic acid (ABA) signaling, including stomatal closure in Arabidopsis. In contrast, SRK2E/OST1/SnRK2.6 encodes an Arabidopsis SnRK2 protein kinase and acts as a positive regulator in the ABA-induced stomatal closure. SRK2E/OST1 is activated by osmotic stress as well as by ABA, but the independence of the two activation processes has not yet been determined. Additionally, interaction between SRK2E/OST1 and PP2C-type phosphatases (ABI1 and ABI2) is not understood. In the present study, we demonstrated that the abi1-1 mutation, but not the abi2-1 mutation, strongly inhibited ABA-dependent SRK2E/OST1 activation. In contrast, osmotic stress activated SRK2E/OST1 even in abi1-1 and aba2-1 plants. The C-terminal regulatory domain of SRK2E/OST1 was required for its activation by both ABA and osmotic stress in Arabidopsis. The C-terminal domain was functionally divided into Domains I and II. Domain II was required only for the ABA-dependent activation of SRK2E/OST1, whereas Domain I was responsible for the ABA-independent activation. Full-length SRK2E/OST1 completely complemented the wilty phenotype of the srk2e mutant, but SRK2E/OST1 lacking Domain II did not. Domain II interacted with the ABI1 protein in a yeast two-hybrid assay. Our results suggested that the direct interaction between SRK2E/OST1 and ABI1 through Domain II plays a critical role in the control of stomatal closure.  相似文献   

8.
9.
In plants, clade A type 2C protein phosphatases (PP2CAs) have emerged as major players in abscisic acid (ABA)-regulated stress responses by inhibiting protein kinase activity. However, how different internal and external environmental signals modulate the activity of PP2CAs are not well known. The transmembrane kinase (TMK) protein 4 (TMK4), one member of a previously identified receptor kinase subfamily on the plasma membrane that plays vital roles in plant cell growth, directly interacts with PP2CAs member (ABA-Insensitive 2, ABI2). tmk4 mutant is hypersensitive to ABA in both ABA-inhibited seed germination and primary root growth, indicating that TMK4 is a negative regulator in ABA signaling pathway. Further analyses indicate that TMK4 phosphorylates ABI2 at three conserved Ser residues, thus enhancing the activity of ABI2. The phosphorylation-mimic ABI2S139DS140DS266D can complement but non-phosphorylated form ABI2S139AS140AS266A cannot complement ABA hypersensitive phenotype of the loss-of-function mutant abi1-2abi2-2. This study provides a previously unidentified mechanism for positively regulating ABI2 by a plasma membrane protein kinase.  相似文献   

10.
Abscisic acid (ABA) is a defense hormone with influence on callose-dependent and -independent resistance against Leptosphaeria maculans acting in the RLMcol pathway. ABA-deficient and -insensitive mutants in Ler-0 background (abal-3 and abil-1) displayed susceptibility to L. maculans, along with a significantly decreased level of callose depositions, whereas abi2-1 and abi3-1 remained resistant, together with the abi5-1 mutant of Ws-0 background. Suppressor mutants of abil-1 confirmed that the L. maculans-susceptible response was due to the dominant negative nature of the abil-1 mutant. Highly induced camalexin levels made ABA mutants in Col-0 background (aba2-1, aba3-1, and abi4-1) appear resistant, but displayed enhanced susceptibility as double mutants with pad3-1, impaired in camalexin biosynthesis. beta-Aminobutyric acid (BABA) pretreatment of Ler-0 contributed to an elevated level of endogenous ABA after L. maculans inoculation. Comparisons between (RLM1co1)pad3 and rlmlLerpad3 showed that ABA and BABA enhancement of callose deposition requires induction from RLM1col. ABII, but not ABI2, was found to be involved in a feedback mechanism that modulates RLM1co, expression. Genetic analysis showed further that this feedback occurs upstream of ABI4 and that components downstream of ABI4 modulate ABIJ activity. ABA and BABA treatments of the L. maculans-susceptible callose synthase mutant pmr4 showed that ABA also induces a callose-independent resistance. Similar treatments enhanced callose depositions and induced resistance to L. maculans in oilseed rape, and BABA-induced resistance was found to be independent of salicylic acid.  相似文献   

11.
12.
13.
Genetic and molecular studies have shown that the Arabidopsis ABSCISIC ACID-INSENSITIVE3 (ABI3) protein plays a prominent role in the control of seed maturation. The ABI3 protein and its orthologues from various other plant species share four domains of high sequence identity, including three basic domains designated as B1, B2 and B3. The leaky abi3-1 mutation is a single amino acid substitution within the B3 domain. A new abi3 allele, abi3-7, was generated by mutagenizing abi3-1 seeds. The abi3-7 line contains, in addition to the abi3-1 mutation, a point mutation that converts residue Ala-458 into Thr within the B2 domain of the ABI3 protein. This Ala residue is absolutely conserved in all known ABI3 orthologues. Abi3-7 seeds display reductions in dormancy and in sensitivity to abscisic acid which are intermediate between those of the leaky abi3-1 and of the severe abi3-4 and abi3-5 mutants. Accumulation and distribution of At2S1 and At2S2 albumin mRNA as well as of AtEm1 and AtEm6 late embryogenesis-abundant proteins and mRNA have been analyzed. Both At2S1 and At2S2 mRNA are reduced in abi3-7, but distribution of At2S2 is spatially restricted. Accumulation of AtEm6 protein is more sensitive to abi3-7 mutation than AtEm1. However both mRNAs are considerably reduced in this mutant. Their distribution is also differentially affected. These results provide genetic evidence for the importance of the conserved B2 domain for ABI3 function in vivo.  相似文献   

14.
The hormone abscisic acid (ABA) regulates stress responses and developmental processes in plants. Calcium-permeable channels activated by reactive oxygen species (ROS) have been shown recently to function in the ABA signaling network in Arabidopsis guard cells. Here, we report that ABA activation of these I(Ca) Ca(2)+ channels requires the presence of NAD(P)H in the cytosol. The protein phosphatase 2C (PP2C) mutant abi1-1 disrupted ABA activation of I(Ca) channels. Moreover, in abi1-1, ABA did not induce ROS production. Consistent with these findings, in abi1-1, H(2)O(2) activation of I(Ca) channels and H(2)O(2)-induced stomatal closing were not disrupted, suggesting that abi1-1 impairs ABA signaling between ABA reception and ROS production. The abi2-1 mutation, which lies in a distinct PP2C gene, also disrupted ABA activation of I(Ca). However, in contrast to abi1-1, abi2-1 impaired both H(2)O(2) activation of I(Ca) and H(2)O(2)-induced stomatal closing. Furthermore, ABA elicited ROS production in abi2-1. These data suggest a model with the following sequence of events in early ABA signal transduction: ABA, abi1-1, NAD(P)H-dependent ROS production, abi2-1, I(Ca) Ca(2)+ channel activation followed by stomatal closing.  相似文献   

15.
16.
17.
Dong HP  Yu H  Bao Z  Guo X  Peng J  Yao Z  Chen G  Qu S  Dong H 《Planta》2005,221(3):313-327
HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.Hong-Ping Dong and Haiqin Yu contributed equally to this study and are regarded as joint first authors.  相似文献   

18.
Chak RK  Thomas TL  Quatrano RS  Rock CD 《Planta》2000,210(6):875-883
 The ABA INSENSITIVE1 (ABI1) and ABI2 genes encode homologous type-2C protein phosphatases with redundant yet distinct functions in abscisic acid (ABA) responses. Results from Northern blot analysis showed that ABA- and mannitol-inducible expression of the COR47 and COR78/LTI78/RD29A (COR78) genes was more impaired in the abi2 mutant of Arabidopsis thaliana (L.) Heynh than in the abi1 mutant. Furthermore, ABA-plus-mannitol treatments were additive towards COR47 gene expression; however, the ABA-deficient aba1 mutant showed reduced COR expression relative to the wild type in response to mannitol and ABA-plus-mannitol treatments. These results support the notion that drought- and ABA-signalling pathways are separate yet overlapping. To facilitate quantitative analysis of the genetic control of tissue-specific ABA- and desiccation-response pathways, we analyzed ABA- and mannitol-inducible expression of a carrot (Daucus carota L.) Dc3 promoter:uidA (β-glucuronidase; GUS) chimaeric reporter (Dc3-GUS) in transgenic wild-type, ABA-deficient aba1, and ABA-insensitive abi1 and abi2 mutants. The Dc3 promoter directed ABA- and mannitol-inducible GUS expression in Arabidopsis guard cells and the two treatments were additive. The aba1, abi1, and abi2 mutant genotypes had reduced GUS expression in guard cells of cotyledons in response to mannitol, whereas abi1 and abi2 mutants were reduced in ABA-inducible GUS expression, consistent with overlapping ABA- and drought-response pathways. Quantitative fluorometric GUS assays of leaf extracts showed that abi2 mutants responded less to exogenous ABA than did abi1 mutants, and abi2 mutants responded more to mannitol than did abi1 mutants. We conclude that Dc3-GUSArabidopsis is a tractable system in which to study tissue-specific ABA and drought signalling and suggest that ABI2 functions predominantly over ABI1 in COR78 and COR47 gene expression and guard-cell Dc3-GUS expression. Received: 23 May 1999 / Accepted: 3 December 1999  相似文献   

19.
Isolation of the Arabidopsis ABI3 gene by positional cloning.   总被引:43,自引:11,他引:32       下载免费PDF全文
Arabidopsis abi3 mutants are altered in various aspects of seed development and germination that reflect a decreased responsiveness to the hormone abscisic acid. The ABI3 gene has been isolated by positional cloning. A detailed restriction fragment length polymorphism (RFLP) map of the abi3 region was constructed. An RFLP marker closely linked to the abi3 locus was identified, and by analyzing an overlapping set of cosmid clones containing this marker, the abi3 locus was localized within a 35-kb region. An 11-kb subfragment was then shown to complement the mutant phenotype in transgenic plants, thereby further delimiting the position of the locus. A candidate ABI3 gene was identified within this fragment as being expressed in developing fruits. The primary structure of the encoded protein was deduced from sequence analysis of a corresponding cDNA clone. In the most severe abi3-4 allele, the size of this predicted protein was reduced by 40% due to the presence of a point mutation that introduced a premature stop codon. The predicted ABI3 protein displays discrete regions of high similarity to the maize viviparous-1 protein.  相似文献   

20.
Plant hormone abscisic acid (ABA) is found in a wide range of land plants, from mosses to angiosperms. However, our knowledge concerning the function of ABA is limited to some angiosperm plant species. We have shown that the basal land plant Physcomitrella patens and the model plant Arabidopsis thaliana share a conserved abscisic acid (ABA) signaling pathway mediated through ABI1-related type 2C protein phosphatases (PP2Cs). Ectopic expression of Arabidopsis abi1-1, a dominant allele of ABI1 that functions as a negative regulator of ABA signaling, or targeted disruption of Physcomitrella ABI1-related gene (PpABI1A) resulted in altered ABA sensitivity and abiotic stress tolerance of Physcomitrella, as demonstrated by osmostress and freezing stress. Moreover, transgenic Physcomitrella overexpressing abi1-1 showed altered morphogenesis. These trangenic plants had longer stem lengths compared to the wild type, and continuous growth of archegonia (female organ) with few sporophytes under non-stress conditions. Our results suggest that PP2C-mediated ABA signaling is involved in both the abiotic stress responses and developmental regulation of Physcomitrella.Key words: ABA, ABI1, Physcomitrella patens, PP2C, signaling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号