首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental reservoirs of glycopeptide-resistant enterococci (GRE) in Norway have been linked to former growth promoting use of the glycopeptide avoparcin in poultry production. We have examined the prevalence of fecal GRE in poultry and poultry farmers 3 to 8 years after the Norwegian avoparcin ban in 1995 and performed molecular analyses of the GRE population. Fecal samples from poultry farmers and their flocks on 29 previously avoparcin-exposed farms were collected on five occasions during the study period (1998 to 2003). All flocks (100%) were GRE positive in 1998. Throughout the study period, 78.5% of the poultry samples were GRE positive. Glycopeptide-resistant Enterococcus faecium (GREF) was isolated from 27.6% of the farmer samples in 1998 and from 27.8% of the samples collected between 1998 and 2003. The prevalence of fecal GRE in poultry declined significantly during the study period, but prevalence in samples from the farmers did not decline. PCR analysis revealed a specific Tn1546-plasmid junction fragment in 93.9% of E. faecium isolates. A putative postsegregation killing (PSK) system linked to Tn1546 was detected in 97.1% of the isolates examined. Multilocus sequence typing of glycopeptide-susceptible (n = 10) and -resistant (n = 10) E. faecium isolates from humans (n = 10) and poultry (n = 10) on two farms displayed 17 different sequence types. The study confirms the continuing persistence of a widespread common plasmid-mediated vanA-pRE25-PSK element within a heterogeneous GRE population on Norwegian poultry farms 8 years after the avoparcin ban. Moreover, it suggests an important role of PSK systems in the maintenance of antimicrobial resistance determinants in reservoirs without apparent antimicrobial selection.  相似文献   

2.
The evolutionary processes responsible for the long-term persistence of glycopeptide-resistant Enterococcus faecium (GREF) in nonselective environments were addressed by genetic analyses of E. faecium populations in animals and humans on two Norwegian poultry farms that were previously exposed to avoparcin. A total of 222 fecal GREF (n = 136) and glycopeptide-susceptible (n = 86) E. faecium (GSEF) isolates were obtained from farmers and poultry on three separate occasions in 1998 and 1999. Pulsed-field gel electrophoresis (PFGE) and plasmid DNA analyses discerned 22 GREF and 32 GSEF PFGE types within shifting polyclonal animal and human E. faecium populations and indicated the presence of transferable plasmid-mediated vanA resistance, respectively. Examples of dominant, persistent GREF PFGE types supported the notion that environmentally well-adapted GREF types may counteract the reversal of resistance. PFGE analyses, sequencing of the purK housekeeping gene, and partial typing of vanA-containing Tn1546 suggested a common animal and human reservoir of glycopeptide resistance. Inverse PCR amplification and sequence analyses targeting the right end of the Tn1546-plasmid junction fragment strongly indicated the presence of a common single Tn1546-plasmid-mediated element in 20 of 22 GREF PFGE types. This observation was further strengthened by vanY-vanZ hybridization analyses of plasmid DNAs as well as the finding of a physical linkage between Tn1546 and a putative postsegregation killing system for seven GREF PFGE types. In conclusion, our observations suggest that the molecular unit of persistence of glycopeptide resistance is a common mobile plasmid-mediated vanA-containing element within a polyclonal GREF population that changes over time. In addition, we propose that "plasmid addiction systems" may contribute to the persistence of GREF in nonselective environments.  相似文献   

3.
VanA-type human (n=69), animal (n=49), and food (n=36) glycopeptide-resistant enterococci (GRE) from different geographic areas were investigated to study their possible reservoirs and transmission routes. Pulsed-field gel electrophoresis (PFGE) revealed two small genetically related clusters, M39 (n=4) and M49 (n=13), representing Enterococcus faecium isolates from animal and human feces and from clinical and fecal human samples. Multilocus sequence typing showed that both belonged to the epidemic lineage of CC17. purK allele analysis of 28 selected isolates revealed that type 1 was prevalent in human strains (8/11) and types 6 and 3 (14/15) were prevalent in poultry (animals and meat). One hundred and five of the 154 VanA GRE isolates, encompassing different species, origins, and PFGE types, were examined for Tn1546 type and location (plasmid or chromosome) and the incidence of virulence determinants. Hybridization of S1- and I-CeuI-digested total DNA revealed a plasmid location in 98% of the isolates. Human intestinal and animal E. faecium isolates bore large (>150 kb) vanA plasmids. Results of PCR-restriction fragment length polymorphism and sequencing showed the presence of prototype Tn1546 in 80% of strains and the G-to-T mutation at position 8234 in three human intestinal and two pork E. faecium isolates. There were no significant associations (P>0.5) between Tn1546 type and GRE source or enterococcal species. Virulence determinants were detected in all reservoirs but were significantly more frequent (P<0.02) among clinical strains. Multiple determinants were found in clinical and meat Enterococcus faecalis isolates. The presence of indistinguishable vanA elements (mostly plasmid borne) and virulence determinants in different species and PFGE-diverse populations in the presence of host-specific purK housekeeping genes suggested that all GRE might be potential reservoirs of resistance determinants and virulence traits transferable to human-adapted clusters.  相似文献   

4.
Avoparcin was used as a feed additive in Norwegian broiler and turkey production from 1986 until 1995. It was banned due to the selection of VanA-type vancomycin-resistant enterococci (VRE) in animal husbandry and to reduce the potential for human exposure to VRE. The aim of the present study was to investigate the prevalence of VRE carriage in Norwegian poultry farmers and their poultry three years after avoparcin was banned. Corresponding faecal samples from poultry and humans on farms where avoparcin had previously been used (exposed farms, n = 73) and farms where avoparcin had never been used (unexposed farms, n = 74) were analysed for the presence of VRE. For each farm, one sample from the poultry house and one sample from the farmer were obtained. VRE were isolated from 72 of 73 (99%) and eight of 74 (11%) poultry samples from exposed and unexposed farms, respectively. VRE were isolated from 13 of 73 (18%) and one of 74 (1%) farmer samples from exposed and unexposed farms, respectively. All VRE isolates were highly resistant to vancomycin and possessed the vanA gene, as shown by PCR. The high prevalence of VRE is in accordance with previous Norwegian studies, and shows a remarkable stability of the VanA resistance determinant in an apparently non-selective environment.  相似文献   

5.
The use of avoparcin as a growth promoter is considered to have selected for vancomycin-resistant enterococci (VRE). In Costa Rica, the use of avoparcin for poultry and swine was intensive until the product was withdrawn from the market in 2000. We evaluated the presence of VRE in poultry, swine, and cattle fecal samples obtained during 1998 and 1999. A total of 185 VRE isolates were recovered from 116 out of 893 samples. Enterococcus faecium was the most frequently isolated species (50.8%), being predominant among poultry (71.6%) and swine (37.7%) isolates, but it was not recovered from the bovine samples. The second-most-frequently-isolated species from poultry and swine, respectively, were E. durans (23.2%) and E. faecalis (21.7%). E. casseliflavus was the only species obtained from bovine samples, but it was not found among the avian isolates. An evident predominance of the vanA determinant among vancomycin-resistant enterococcal species from poultry and swine, but not from cattle, was observed and was similar to the situation in European countries before avoparcin was forbidden. The diversity of the vanA determinant in the isolates was assessed by detection of the IS1251 insertion in the vanSH intergenic region and of the IS1476 insertion in the vanXY intergenic region. However, in none of the 154 vanA+ isolates recovered in this study were those insertions detected.  相似文献   

6.
Large amounts of tylosin, zinc-bacitracin, and avilamycin are currently used as prophylactics in New Zealand broiler production. Avoparcin was also used from 1977 to 2000. A total of 382 enterococci were isolated from 213 fecal samples (147 individual poultry farms) using enrichment broths plated on m-Enterococcus agar lacking antimicrobials. These isolates were then examined to determine the prevalence of antimicrobial resistance. Of the 382 isolates, 5.8% (22 isolates) were resistant to vancomycin, and 64.7% were resistant to erythromycin. The bacitracin MIC was > or =256 microg/ml for 98.7% of isolates, and the avilamycin MIC was > or =8 microg/ml for 14.9% of isolates. No resistance to ampicillin or gentamicin was detected. Of the 22 vancomycin-resistant enterococci (VRE) isolates, 18 (81.8%) were Enterococcus faecalis, 3 were Enterococcus faecium, and 1 was Enterococcus durans. However, when the 213 fecal enrichment broths were plated on m-Enterococcus agar containing vancomycin, 86 VRE were recovered; 66% of these isolates were E. faecium and the remainder were E. faecalis. Vancomycin-resistant E. faecium isolates were found to have heterogenous pulsed-field gel electrophoresis (PFGE) patterns of SmaI-digested DNA, whereas the PFGE patterns of vancomycin-resistant E. faecalis isolates were identical or closely related, suggesting that this VRE clone is widespread throughout New Zealand. These data demonstrate that vancomycin-resistant E. faecalis persists in the absence and presence of vancomycin-selective pressure, thus explaining the dominance of this VRE clone even in the absence of avoparcin.  相似文献   

7.
A total of 98 vancomycin-resistant Enterococcus faecium (VREF) isolates (58 isolates from patients and 40 isolates from poultry) were compared based on their antimicrobial susceptibility, Tn1546 element organization, and pulsed-field gel electrophoresis (PFGE) patterns. This comparison aided in determining the relationships between the groups of isolates. All the VREF isolates harbored the vanA gene; however, 29 (29.6%) of the isolates exhibited the VanB phenotype-vanA genotype. Furthermore, the VREF isolates from humans and poultry exhibited distinct antimicrobial resistance patterns. The PCR mapping of the Tn1546 elements exhibited 12 different transposon types (A to L). The VREF isolates of poultry were classified into types A to D, whereas the human isolates were classified into types E to L. A PFGE analysis demonstrated a high degree of clonal heterogeneity in both groups of isolates; however, the distinct VREF clones appeared in each group of isolates. The deletion of the vanX-vanY genes or insertion of IS1216V in the intergenic region from the vanX-vanY genes is directly associated with the incongruence of the VanB phenotype-vanA genotype in human VREF isolates. These data suggest that the VREF isolates exhibit distinct phenotypic and genotypic traits according to their origins, which suggests that no evidence exists to substantiate the clonal spread or transfer of vancomycin resistance determinants between humans and poultry.  相似文献   

8.
Vancomycin resistant enterococci (VRE) isolates from humans (23 isolates) and poultry (20 isolates) were characterized by antibiotic susceptibility, vancomycin resistance transferability, pulsed-field gel electrophoresis (PFGE), and structural analysis of Tn1546-like elements. VRE isolates from humans and poultry showed different resistance patterns, transferability, and transfer rate. In addition to these phenotypic differences between humans and poultry VRE, PFGE and the structure of Tn1546-like elements were also distinct. Most poultry isolates (16/20) were identical to the prototype vanA transposon, Tn1546, while most human isolates (21/23) had multiple integrations of insertion sequence. The transmission of VRE and vancomycin resistance determinant between humans and poultry could not be demonstrated in this study.  相似文献   

9.
Seven years after the ban of avoparcin, VREF could still be isolated within sectors of the UK broiler industry. The aim of this study was to assess whether there is a carryover of VREF between consecutive flocks of birds, to conduct a preliminary investigation of possible routes of entry of VREF into broiler houses and to follow the dynamics of VREF shed by growing birds. A series of nine visits were made to two of six houses on a conventional broiler farm. A total of 343 vanA VREF were recovered from environmental (95/843) and faecal (248/416) samples. Significant differences were observed in the carryover of VREF between pre- and postcohort postcleaning and disinfection visits (RR 0.57, P=0.006). Ninety-nine percent of the VREF isolates were resistant to more than five antimicrobials, with 42 isolates (n=49) positive for erm(B) and 32 (n=40) for vat(E). Pulsed field gel electrophoresis (PFGE) typing identified 50 PFGE types within 15 different PFGE clusters of 90% similarity, demonstrating a high level of genetic diversity within VREF populations from epidemiologically related broiler flocks and broiler houses. Further characterization of Tn1546 from different clones showed a low diversity of Tn-types, suggesting horizontal transfer of resistance determinants between different genetic clones. Thus, this study does not only show the persistence of VREF but also of multi-drug resistant lineages of VREF.  相似文献   

10.
The occurrence, structure, and mobility of Tn1546-like elements were studied in environmental vancomycin-resistant enterococci (VRE) isolated from municipal sewage, activated sludge, pharmaceutical waste derived from antibiotic production, seawater, blue mussels, and soil. Of 200 presumptive VRE isolates tested, 71 (35%) harbored vanA. Pulsed-field gel electrophoresis analysis allowed the detection of 26 subtypes, which were identified as Enterococcus faecium (n = 13), E. casseliflavus (n = 6), E. mundtii (n = 3), E. faecalis (n = 3), and E. durans (n = 1) by phenotypic tests and 16S ribosomal DNA sequencing. Long PCR-restriction fragment length polymorphism (L-PCR-RFLP) analysis of Tn1546-like elements and PCR analysis of internal regions revealed the presence of seven groups among the 29 strains studied. The most common group (group 1) corresponded to the structure of Tn1546 in the prototype strain E. faecium BM4147. Two novel L-PCR-RFLP patterns (groups 3 and 4) were found for E. casseliflavus strains. Indistinguishable Tn1546-like elements occurred in VRE strains belonging to different species or originating from different sources. Interspecies plasmid-mediated transfer of vancomycin resistance to E. faecium BM4105 was demonstrated for E. faecalis, E. mundtii, and E. durans. This study indicates that VRE, including species other than E. faecium and E. faecalis, are widespread in nature and in environments that are not exposed to vancomycin selection and not heavily contaminated with feces, such as seawater, blue mussels, and nonagricultural soil. Tn1546-like elements can readily transfer between enterococci of different species and ecological origins, therefore raising questions about the origin of these transposable elements and their possible transfer between environmental and clinical settings.  相似文献   

11.
12.
AIMS: Multilocus sequence typing (MLST) was performed for vancomycin-resistant Enterococcus faecium (VREF) from diverse geographical areas in Korea to obtain insights into the genetic relationships with other molecular profiles. To understand the diversity of lineages, vancomycin-susceptible E. faecium (VSEF) were included. METHODS AND RESULTS: A total of 60 E. faecium isolates were analysed by MLST and esp profile. Molecular typing of Tn1546 of 30 VREF strains was evaluated by overlapping PCR of Tn1546 and DNA sequencing. Seven sequence types (ST) were found among 30 VSEF isolates, and four STs were found among 30 VREF isolates. The types most frequently encountered were ST 78 (26 isolates) and ST 203 (16 isolates). Of the 60 E. faecium isolates, 35 isolates were positive for the esp gene. On molecular typing of Tn1546, all VREF isolates were divided into four main types. Strains with the same ST showed divergence in Tn1546 types and strains with the same Tn1546 type represented different STs. CONCLUSIONS: An association between Tn1546 typing and MLST was not found. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest that the horizontal spread of Tn1546 between strains plays a major role in the dissemination of vancomycin resistance in Korea.  相似文献   

13.
Aim:  The aim of this study was to investigate the prevalence of Campylobacter species in a subset of intensive poultry flocks by examining samples collected in geographically disparate areas on the island of Ireland.
Methods and Results:  Faecal, water and environmental samples were collected from the interior of poultry houses on nine farms. Three cultural methods were used for Campylobacter isolation: direct plating, enrichment culture and a recovery method for emerging Campylobacter spp. Presumptive Campylobacter isolates were confirmed using biochemical tests and further identified to species level by multiplex PCR. All flocks sampled in this study were found to be contaminated with Campylobacter at the time of sampling. Structural and air samples taken from the interior of broiler houses were also found to be Campylobacter positive. All water samples were found to be Campylobacter negative. The Campycheck method was used for the isolation of emerging Campylobacter spp.
Conclusions:  Campylobacter spp. were recovered (as contaminants) from the poultry house interior, air and environmental samples in all intensive poultry flocks surveyed.
Significance and Impact of the Study:  This study highlights the need for improved biosecurity on selected poultry farms.  相似文献   

14.
Avoparcin, a vancomycin analogue, was banned as a feed additive in Taiwan in 2000. A nationwide surveillance was conducted to study the prevalence of vancomycin-resistant enterococci (VRE) on chicken farms between 2000 and 2003. Among the 1021 E. faecalis and 967 E. faecium isolates studied, resistance to tetracycline, erythromycin, high-level aminoglycosides, ciprofloxacin and chloramphenicol either increased or remained high except vancomycin. The proportion of VRE decreased, between 2000 and 2003, from 13.7% (22/161) to 3.7% (11/299) for E. faecalis, and 3.4% (4/119) to 0% (0/300) for E. faecium. Only 8.8% (7/80) of the chicken farms surveyed harboured VRE in 2003 compared with 25% (15/60) in 2000. All VRE were resistant to tetracycline and erythromycin. All VRE possess the vanA gene but nearly all (79 of 83 isolates) were susceptible to teicoplanin, indicating VanB phenotype. Some clones were detected from different farms in various regions over the years. We conclude that the frequency of VRE in chicken farms decreased in association with a ban on avoparcin; and the continued presence of VRE may be due to the ability of some strains to persist in the farms, transfer of vancomycin resistance determinants or co-selection by the continued use of other antibiotics.  相似文献   

15.
The use of avoparcin as a growth promoter is considered to have selected for vancomycin-resistant enterococci (VRE). In Costa Rica, the use of avoparcin for poultry and swine was intensive until the product was withdrawn from the market in 2000. We evaluated the presence of VRE in poultry, swine, and cattle fecal samples obtained during 1998 and 1999. A total of 185 VRE isolates were recovered from 116 out of 893 samples. Enterococcus faecium was the most frequently isolated species (50.8%), being predominant among poultry (71.6%) and swine (37.7%) isolates, but it was not recovered from the bovine samples. The second-most-frequently-isolated species from poultry and swine, respectively, were E. durans (23.2%) and E. faecalis (21.7%). E. casseliflavus was the only species obtained from bovine samples, but it was not found among the avian isolates. An evident predominance of the vanA determinant among vancomycin-resistant enterococcal species from poultry and swine, but not from cattle, was observed and was similar to the situation in European countries before avoparcin was forbidden. The diversity of the vanA determinant in the isolates was assessed by detection of the IS1251 insertion in the vanSH intergenic region and of the IS1476 insertion in the vanXY intergenic region. However, in none of the 154 vanA+ isolates recovered in this study were those insertions detected.  相似文献   

16.
The potential impact of food animals in the production environment on the bacterial population as a result of antimicrobial drug use for growth enhancement continues to be a cause for concern. Enterococci from 82 farms within a poultry production region on the eastern seaboard were isolated to establish a baseline of susceptibility profiles for a number of antimicrobials used in production as well as clinical environments. Of the 541 isolates recovered, Enterococcus faecalis (53%) and E. faecium (31%) were the predominant species, while multiresistant antimicrobial phenotypes were observed among all species. The prevalence of resistance among isolates of E. faecalis was comparatively higher among lincosamide, macrolide, and tetracycline antimicrobials, while isolates of E. faecium were observed to be more frequently resistant to fluoroquinolones and penicillins. Notably, 63% of the E. faecium isolates were resistant to the streptogramin quinupristin-dalfopristin, while high-level gentamicin resistance was observed only among the E. faecalis population, of which 7% of the isolates were resistant. The primary observations are that enterococci can be frequently isolated from the poultry production environment and can be multiresistant to antimicrobials used in human medicine. The high frequency with which resistant enterococci are isolated from this environment suggests that these organisms might be useful as sentinels to monitor the development of resistance resulting from the usage of antimicrobial agents in animal production.  相似文献   

17.
The evolutionary processes responsible for the long-term persistence of glycopeptide-resistant Enterococcus faecium (GREF) in nonselective environments were addressed by genetic analyses of E. faecium populations in animals and humans on two Norwegian poultry farms that were previously exposed to avoparcin. A total of 222 fecal GREF (n = 136) and glycopeptide-susceptible (n = 86) E. faecium (GSEF) isolates were obtained from farmers and poultry on three separate occasions in 1998 and 1999. Pulsed-field gel electrophoresis (PFGE) and plasmid DNA analyses discerned 22 GREF and 32 GSEF PFGE types within shifting polyclonal animal and human E. faecium populations and indicated the presence of transferable plasmid-mediated vanA resistance, respectively. Examples of dominant, persistent GREF PFGE types supported the notion that environmentally well-adapted GREF types may counteract the reversal of resistance. PFGE analyses, sequencing of the purK housekeeping gene, and partial typing of vanA-containing Tn1546 suggested a common animal and human reservoir of glycopeptide resistance. Inverse PCR amplification and sequence analyses targeting the right end of the Tn1546-plasmid junction fragment strongly indicated the presence of a common single Tn1546-plasmid-mediated element in 20 of 22 GREF PFGE types. This observation was further strengthened by vanY-vanZ hybridization analyses of plasmid DNAs as well as the finding of a physical linkage between Tn1546 and a putative postsegregation killing system for seven GREF PFGE types. In conclusion, our observations suggest that the molecular unit of persistence of glycopeptide resistance is a common mobile plasmid-mediated vanA-containing element within a polyclonal GREF population that changes over time. In addition, we propose that “plasmid addiction systems” may contribute to the persistence of GREF in nonselective environments.  相似文献   

18.
Campylobacter isolates from diverse samples within broiler production and processing environments were typed by using flaA short variable region DNA sequence analysis. Sixteen flocks from four different farms representing two broiler producers in Arkansas and California were analyzed. Fourteen of the flocks (87.5%) were Campylobacter-positive; two remained negative throughout the 6-week rearing period. In general, multiple clones were present within a flock. Additionally, clones found within a flock were also present on the final product, although the diversity of Campylobacter spp. on the final product appeared to be reduced relative to that observed within the flock. Comparison of clones between flocks on the same farm revealed that some clones of Campylobacter persisted in multiple flocks. Furthermore, some clones were identified across the two farms that were under the same management. In two sampling periods, environmental isolates were positive for Campylobacter prior to flock shedding. Environmental samples associated with five additional flocks were positive for Campylobacter concomitantly with recovery of Campylobacter from the birds. Analysis of the environmental isolates that were positive prior to flock shedding demonstrated that in some instances the environmental isolates possessed genotypes identical to those of isolates originating from the flock, while in other cases the environmental isolates possessed genotypes that were distantly related to isolates obtained from the flock. Analyses of environmental isolates that tested positive concurrently with the positive isolates from the flocks demonstrated varied results; in some instances the environmental isolates possessed genotypes identical to those of isolates originating from the flock, while in other cases the environmental isolates possessed genotypes that were distantly related to isolates obtained from the flock. These data suggest that the external environment may contribute to Campylobacter contamination during poultry production and processing. However, environmental contamination with Campylobacter does not appear to be the sole contributing factor.  相似文献   

19.
In recent years, extended-spectrum β-lactamases (ESBL) producing bacteria have been found in livestock, mainly as asymptomatic colonizers. The zoonotic risk for people working in close contact to animal husbandry has still not been completely assessed. Therefore, we investigated the prevalence of ESBL-producing Escherichia spp. in livestock animals and workers to determine the potential risk for an animal-human cross-transmission.In Mecklenburg-Western Pomerania, northeast Germany, inguinal swabs of 73 individuals with livestock contact from 23 different farms were tested for ESBL-producing Escherichia spp. Two pooled fecal samples per farm of animal origin from 34 different farms (17 pig farms, 11 cattle farms, 6 poultry farms) as well as cloacal swabs of 10 randomly selected broilers or turkeys were taken at each poultry farm. For identification, selective chromogenic agar was used after an enrichment step. Phenotypically ESBL-producing isolates (n = 99) were tested for CTX-M, OXA, SHV and TEM using PCR, and isolates were further characterized using multilocus sequence typing (MLST). In total, 61 diverse isolates from different sources and/or different MLST/PCR results were acquired. Five farm workers (three from cattle farms and two from pig farms) harbored ESBL-producing E. coli. All human isolates harbored the CTX-M β-lactamase; TEM and OXA β-lactamases were additionally detected in two, resp. one, isolates. ESBL-producing Escherichia spp. were found in fecal samples at pig (15/17), cattle (6/11) and poultry farms (3/6). In total, 70.6% (24/36) of the tested farms were ESBL positive. Furthermore, 9 out of 60 cloacal swabs turned out to be ESBL positive. All isolated ESBL-producing bacteria from animal sources were E. coli, except for one E. hermanii isolate. CTX-M was the most prevalent β-lactamase at cattle and pig farms, while SHV predominated in poultry. One human isolate shared an identical MLST sequence type (ST) 3891 and CTX-M allele to the isolate found in the cattle fecal sample from the same farm, indicating a zoonotic transfer. Two other pairs of human-pig and human-cattle E. coli isolates encoded the same ESBL genes but did not share the same MLST ST, which may indicate horizontal resistance gene transfer. In summary, the study shows the high prevalence of ESBL-producing E.coli in livestock in Mecklenburg- Western Pomerania and provides the risk of transfer between livestock and farm workers.  相似文献   

20.
The diversity and genetic interrelation of Campylobacter jejuni and C. coli isolated from Swiss poultry were assessed by three independent typing methods. Samples were derived prior to slaughter from 100 randomly selected flocks (five birds per flock) raised on three different farm types. The observed flock prevalence was 54% in total, with 50% for conventional and 69% for free-range farms. Birds held on farms with a confined roaming area had the lowest prevalence of 37%. Campylobacter isolates were characterized by amplified fragment length polymorphism (AFLP), restriction fragment length polymorphism of flaA PCR fragments (flaA-RFLP), and disk diffusion testing for eight antimicrobial agents that are commonly used in veterinary or human medicine in Switzerland. Analysis of the genotypic results indicates that the Campylobacter population in Swiss poultry is genetically highly diverse. Nevertheless, occasionally, isolates with identical or nearly identical characteristics were isolated from different farms or farm types in different locations. Genetic typing by AFLP and flaA-RFLP was found to be complementary. The majority of isolates (67%) were susceptible to all tested antibiotics; however, single, double, and triple resistances were observed in 7%, 23%, and 2% of the strains, respectively. There was no correlation between genotype and antibiotic resistance. Surprisingly, sulfonamide resistance was frequently found together with streptomycin resistance. Our findings illustrate the results of common genetic exchange in the studied bacterial population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号