首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiation inactivation was used to examine the mechanism of activation of adenylate cyclase in the cultured renal epithelial cell line LLC-PK1 with hormonal (vasopressin) and nonhormonal (GTP, forskolin, fluoride, and chloride) activating ligands. Intact cells were frozen, irradiated at -70 degrees C (0-14 Mrad), thawed, and assayed for adenylate cyclase activity in the presence of activating ligands. The ln (adenylate cyclase activity) vs. radiation dose relation was linear (target size 162 kDa) for vasopressin- (2 microM) stimulated activity and concave downward for unstimulated (10 mM Mn2+), NaF- (10 mM) stimulated, and NaCl- (100 mM) stimulated activities. Addition of 2 microM vasopressin did not alter the ln activity vs. dose relation for NaF- (10 mM) stimulated activity. The dose-response relations for adenylate cyclase activation and for transition in the ln activity vs. dose curve shape were measured for vasopressin and NaF. On the basis of our model for adenylate cyclase subunit interactions reported previously [Verkman, A. S., Skorecki, K. L., & Ausiello, D. A. (1986) Am. J. Physiol. 260, C103-C123] and of new mathematical analyses, activation mechanisms for each ligand are proposed. In the unstimulated state, equilibrium between alpha beta and alpha + beta favors alpha beta; dissociated alpha binds to GTP (rate-limiting step), which then combines with the catalytic (C) subunit to form active enzyme. Vasopressin binding to receptor provides a rapid pathway for GTP binding to alpha. GTP and its analogues accelerate the rate of alpha GTP formation. Forskolin inhibits the spontaneous deactivation of activated C. Activation by fluoride may occur without alpha beta dissociation or GTP addition through activation of C by an alpha beta-F complex.  相似文献   

2.
We have examined the inhibitory regulation by Ca2+ of the adenylate cyclase activity associated with microsomes isolated from bovine aorta smooth muscle. In the presence of 2 mM MgCl2, Ca2+ (0.8-100 microM) inhibited in a noncompetitive manner activation of the enzyme by GTP, Gpp[NH]p, or forskolin. In all instances the value for half-maximal inhibition was between 2 and 3 microM. In contrast, Ca2+ inhibited the activation by MgCl2 (2-50 mM), alone or in the presence of GTP, in a competitive manner. The inhibition of adenylate cyclase by 10 microM Ca2+ was reversed in the presence of either 5 or 25 microM calmodulin or troponin C. These data show that (i) Ca2+, at concentrations similar to those which activate smooth muscle contraction, inhibits the stimulation of adenylate cyclase by several activators; (ii) Ca2+ and Mg2+ compete for a common site on the smooth muscle adenylate cyclase complex; and (iii) the reversal of Ca2+-dependent inhibition by Ca2+-binding proteins may be produced by chelation of the metal by these proteins.  相似文献   

3.
In the presence of 1 microM atrial natriuretic factor (ANF) and low (0.1 mM) Mg2+ concentrations, the initial rate of binding of [3H]guanosine 5'-[beta, gamma-imido)triphosphate [( 3H]p[NH]ppG) to rat lung plasma membranes was increased twofold to threefold. ANF-dependent stimulation of the initial rate of [3H]p[NH]ppG binding was reduced at high (5 mM) Mg2+ concentrations. Preincubation of membranes with p[NH]ppG (5 min at 37 degrees C) eliminated the ANF-dependent effect on [3H]p[NH]ppG binding whereas ANF-dependent [3H]p[NH]ppG binding was unaffected by similar pretreatment with guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). An increase in ANF concentration from 10 pM to 1 microM caused a 40% decrease in forskolin-stimulated or isoproterenol-stimulated adenylate cyclase activities (IC50 5 nM) in rat lung plasma membranes. GTP (100 microM) was obligatory for the ANF-dependent inhibition of adenylate cyclase, which could be completely overcome by the presence of 100 microM GDP[beta S] or the addition of 10 mM Mn2+. Reduction of Na2+ concentration from 120 mM to 20 mM had the same effect. Pertussis toxin eliminated ANF-dependent inhibition of adenylate cyclase by catalyzing ADP-ribosylation of membrane-bound Ni protein (41-kDa alpha subunit of the inhibitory guanyl-nucleotide-binding protein of adenylate cyclase). The data support the notion that one of the ANF receptors in rat lung plasma membranes is negatively coupled to a hormone-sensitive adenylate cyclase complex via the GTP-binding Ni protein.  相似文献   

4.
A novel adenylate cyclase activity was found in crude homogenates of Neurospora crassa. The adenylate cyclase had substantial activity with ATP-Mg2+ as substrate differing significantly from the strictly ATP-Mn2+-dependent enzyme characterized previously. Additionally, the ATP-Mg2+-dependent activity was stimulated two- to fourfold by GTP or guanyl-5'-yl-imido-diphosphate (Gpp(NH)p). We propose that the ATP-Mg2+-dependent, guanine nucleotide-stimulated activity is due to a labile regulatory component (G component) of the adenylate cyclase which was present in carefully prepared extracts. The adenylate cyclase had a pH optimum of 5.8 and both the catalytic and G component were particulate. The Km for ATP-Mg2+ was 2.2 mM in the presence of 4.5 mM excess Mg2+. Low Mn2+ concentrations had no effect on adenylate cyclase activity whereas high concentrations of Mn2+ or Mg2+ stimulated the enzyme. Maximal Gpp(NH)p stimulation required preincubation of the enzyme in the presence of the guanine nucleotide and the K1/2 for Gpp(NH)p stimulation was 110 nM. Neither fluoride nor any of a variety of glycolytic intermediates or hormones, including glucagon, epinephrine, and dopamine, had an effect on ATP-Mg2+-dependent adenylate cyclase activity. However, the enzymatic activity was stimulated not only by GTP but also by 5'-AMP and was inhibited by NADH.  相似文献   

5.
Human blood platelets were disrupted by ultrasonication, and the guanylate cyclase activity was determined in the 105,000 g supernatant. The guanylate cyclase preparation obtained in the absence of dithiothreitol (DTT) was characterized by a nonlinear dynamics of cGMP synthesis during incubation at 37 degrees C. The use of 0.2 mM DTT during platelet ultrasonication stabilized the guanylate cyclase reaction and did not influence the enzyme activity. With a rise in DTT concentration up to 2 mM the guanylate cyclase activity diminished. Sodium nitroprusside stimulated the enzyme; this effect was enhanced in the presence of DTT. The maximum guanylate cyclase activity was revealed at 4 mM Mn2+ or Mg2+ and with 1 mM GTP. In the presence of Mn2+ the enzyme activity was higher than with Mg2+. The apparent Km values for GTP in the presence of 4 mM Mn2+ and Mg2+ was 30 and 200 microM, respectively. At GTP/cation ratio of 1:4 the Km values for Mn2+ and Mg2+ were nearly the same (249 and 208 microM, respectively). It was assumed that besides being involved in the formation of the GTP-substrate complex, Mn2+ exerts a strong influence on guanylate cyclase by oxidizing the SH-groups of the enzyme.  相似文献   

6.
The adenosine analogue 9-(Tetrahydro-2-furyl)adenine, SQ 22536, inhibited adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity of crude membrane preparations from catfish (Ictalurus melas) and rat isolated hepatocytes in a non-competitive manner. The IC50s were reduced in the presence of NaF. SQ 22536 reduced the activity of adenylate cyclase also in the presence of increasing concentrations of GTP, as well as Mg++ and Mn++. In the presence of catecholamines (epinephrine, norepinephrine, isoproterenol, phenylephrine) SQ 22536 reduced their activating effect on adenylate cyclase in both catfish and rat membranes. SQ 22536 also inhibited the effect of glucagon (0.1 microM) on rat membrane cyclase activity.  相似文献   

7.
Insulin failed to exert an effect on the basal and glucagon- and guanosine 5'-[beta, gamma-imido]-triphosphate-stimulated adenylate cyclase activities of hepatocyte membranes. In the presence of high GTP (0.1 mM) concentrations, however, insulin was shown to inhibit adenylate cyclase activity. This effect was dose-dependent, exhibiting an EC50 (median effective concentration) of 3 microM for GTP. Elevated glucagon concentrations blocked the inhibitory effect of insulin in a dose-dependent fashion, with an EC50 of 1 nM. The insulin inhibition was dose-dependent (EC50 = 90 pM). The inhibitory effects of insulin were abolished using membranes from either glucagon-desensitized hepatocytes or cholera-toxin-treated hepatocytes. If either Mn2+ replaced Mg2+ in adenylate cyclase assays or Na+ was removed from the assay mixtures then insulin failed to exert any inhibitory effect. It is suggested that insulin exerts its action on adenylate cyclase through an inhibitory guanine nucleotide protein. This is integrated with the proposal [Heyworth, Rawal & Houslay (1983) FEBS Lett. 154, 87-91; Heyworth, Wallace & Houslay (1983) Biochem. J. in the press] that insulin mediates a variety of cellular effects through a specific guanine nucleotide regulatory protein and associated protein kinase(s).  相似文献   

8.
Inhibition of a Low Km GTPase Activity in Rat Striatum by Calmodulin   总被引:1,自引:0,他引:1  
In rat striatum, the activation of adenylate cyclase by the endogenous Ca2+-binding protein, calmodulin, is additive with that of GTP but is not additive with that of the nonhydrolyzable GTP analog, guanosine-5'-(beta, gamma-imido)triphosphate (GppNHp). One possible mechanism for this difference could be an effect of calmodulin on GTPase activity which has been demonstrated to "turn-off" adenylate cyclase activity. We examined the effects of Ca2+ and calmodulin on GTPase activity in EGTA-washed rat striatal particulate fractions depleted of Ca2+ and calmodulin. Calmodulin inhibited GTP hydrolysis at concentrations of 10(-9)-10(-6) M but had no effect on the hydrolysis of 10(-5) and 10(-6) M GTP, suggesting that calmodulin inhibited a low Km GTPase activity. The inhibition of GTPase activity by calmodulin was Ca2+-dependent and was maximal at 0.12 microM free Ca2+. Maximal inhibition by calmodulin was 40% in the presence of 10(-7) M GTP. The IC50 for calmodulin was 100 nM. In five tissues tested, calmodulin inhibited GTP hydrolysis only in those tissues where it could also activate adenylate cyclase. Calmodulin could affect the activation of adenylate cyclase by GTP in the presence of 3,4-dihydroxyphenylethylamine (DA, dopamine). Calmodulin decreased by nearly 10-fold the concentration of GTP required to provide maximal stimulation of adenylate cyclase activity by DA in the striatal membranes. The characteristics of the effect of calmodulin on GTPase activity with respect to Ca2+ and calmodulin dependence and tissue specificity parallel those of the activation of adenylate cyclase by calmodulin, suggesting that the two activities are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
1. Arrhenius plots of the glucagon-stimulated adenylate cyclase, 5'-nucleotidase, (Na+ + K+)-stimulated adenosine triphosphatase and Mg2+-dependent adenosine triphosphatase activities of control hamster liver plasma membranes exhibited two break points at around 25 and 13 degrees C, whereas Arrhenius plots of their activities in hibernating hamster liver plasma membranes exhibited two break points at around 25 and 4 degrees C. 2. A single break occurring between 25 and 26 degrees C was observed in Arrhenius plots of the activities of fluoride-stimulated adenylate cyclase, basal adenylate cyclase and cyclic AMP phosphodiesterase of liver plasma membranes from both control and hibernating animals. 3. Arrhenius plots of phosphodiesterase I activity showed a single break at 13 degrees C for membranes from control animals, and a single break at around 4 degrees C for liver plasma membranes from hibernating animals. 4. The temperature at which break points occurred in Arrhenius plots of glucagon- and fluoride-stimulated adenylate cyclase activity were decreased by about 7--8 degrees C by addition of 40 mm-benzyl alcohol to the assays. 5. Discontinuities in the Arrhenius plots of 4-anilinonaphthalene-1-sulphonic acid fluorescence occurred at around 24 and 13 degrees C for liver plasma membranes from control animals, and at around 25 and 4 degrees C for membranes from hibernating animals. 6. We suggest that in hamster liver plasma membranes from control animals a lipid phase separation occurs at around 25 degrees C in the inner half of the bilayer and at around 13 degrees C in the outer half of the bilayer. On hibernation a change in bilayer asymmetry occurs, which is expressed by a decrease in the temperature at which the lipid phase separation occurs in the outer half of the bilayer to around 4 degrees C. The assumption made is that enzymes expressing both lipid phase separations penetrate both halves of the bilayer, whereas those experiencing a single break penetrate one half of the bilayer only.  相似文献   

10.
Membrane fractions obtained from hepatocytes treated with glucagon exhibited a decreased glucagon (with or without GTP)-stimulated adenylate cyclase activity. A maximum effect was seen in around 5 min. No change in the rate of cyclic AMP production was observed for the basal, NaF-, p[NH]ppG (guanosine 5'-[beta, gamma-imido]-triphosphate)- and GTP-stimulated states of the enzyme. The lag observed in the p[NH]ppG-stimulated adenylate cyclase activity of native membranes was abolished when membranes from glucagon-pretreated cells were used. When Mn2+ replaced Mg2+ in the assays, the magnitude of the apparent desensitization was decreased. Mn2+ abolished the lag of onset of p[NH]ppG-stimulated activity in native membranes. The desensitization process was dose-dependent on glucagon, which exhibited a Ka of 4 X 10(-10) M. Depletion of intracellular ATP did not affect this process. It is suggested that this desensitization occurs at the level of the guanine nucleotide-regulatory protein.  相似文献   

11.
Tetraploid strains of Saccharomyces cerevisiae carrying different dosages of the CYR1+ gene have been constructed. Adenylate cyclase activity observed in these tetraploid strains was proportional to the dosage of the active CYR1+ gene. Of the 57 mutants requiring adenosine 3',5'-monophosphate for growth at 35 degrees C, two allelic temperature-sensitive cyr1 mutants produced thermolabile adenylate cyclase. Crude extract and plasma membrane fraction of cyr1 mutant cells had no adenylate cyclase activity when assayed with GTP or 5'-guanylyl imidodiphosphate in the presence of Mn2+ or Mg2+. Plasma membrane and Lubrol-soluble plasma membrane fractions obtained from the temperature-sensitive cyr1 mutant were thermolabile compared with those from the wild-type strain. Three cyr1 mutants carried nonsense mutations susceptible to ochre (UAA) suppressors, SUP3 and SUP-o, and had no detectable level of adenylate cyclase activity. It is concluded that the cyr1 mutants carry lesions in the structural gene for adenylate cyclase.  相似文献   

12.
We report that the adenylate cyclase system in human platelets is subject to multiple regulation by guanine nucleotides. Previously it has been reported that GTP is either required for or has little effect on the response of the enzyme to prostaglandin E1. We have found that when platelet lysates were prepared in the presence of 5 mM EDTA, GTP lowered the basal and prostaglandin E1-stimulated adenylate cyclase activity, but at a higher concentration of Mn2+, it caused an increase in enzyme activity exceeding that occurring in the presence of prostaglandin E1. In the presence of Mn2+, dGTP mimics the effect of GTP and is 50% as effective as GTP. Our data suggest that the inhibitory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is mainly due to its direct effect on the enzyme itself, whereas the stimulatory effect of GTP on prostaglandin E1-stimulated adenylate cyclase is due to enhancement of the coupling between the prostaglandin E1 receptor and adenylate cyclase. These studies also indicate that the method of preparation of platelet lysates can profoundly alter the nature of guanine nucleotide regulation of adenylate cyclase.  相似文献   

13.
This study was aimed to elucidate whether GDP can mediate hormonal signal to adenylate cyclase in hepatic glucagon sensitive adenylate cyclase with ATP as substrate. Conversion of added GDP to GTP catalyzed by nucleoside diphosphate kinase was suppressed to less than 0.3% of added GDP by including UDP. Inhibition of this enzyme activity by UDP was accompanied by a preferential loss of the stimulatory effect of glucagon plus GDP on cyclase activity without changes in effects of glucagon plus GTP, glucagon plus guanosine 5'-(beta, gamma-imino)triphosphate, and NaF. Under this condition, i.e. in the presence of UDP, GDP competitively inhibited the actions of GTP (Ki for GDP, 1 microM) and guanosine 5'-(beta, gamma-imino)triphosphate in the presence of glucagon, the inhibition being complete at high GDP concentrations. GDP also inhibited cyclase activity stimulated by NaF with UDP but did only slightly without UDP. It was demonstrated that nucleoside diphosphate kinase is located in membranes in addition to cytosol fraction. However, the activity of membrane-associated enzyme was not affected by the addition of glucagon. Based on these observations, it is concluded that GDP is unable to mediate hormonal signal to adenylate cyclase and that it acts as an inhibitor of cyclase activity stimulated by GTP or its analog along with hormone. The results suggest a possible role of membrane-associated nucleoside diphosphate kinase in determining GTP and GDP levels at or near their binding site so as to replenish GTP and, thereby, decrease the inhibitory action of GDP when hormone is present.  相似文献   

14.
Adenylate cyclase in permeabilized cells of Saccharomyces cerevisiae was examined. Among various permeabilization procedures, including organic solvents, detergents and other reagents, dimethylsulfoxide (DMSO) and digitonin treatments resulted in the highest recovery of adenylate cyclase activity. Incubation of cells at 30 degrees C with digitonin at 0.01% to 0.1%, or DMSO at 20% to 40% for 15 to 30 min gave optimal adenylate cyclase activity. The enzyme activity in digitonin-permeabilized cells could be supported only by Mn2+, whereas Mg2+ with or without guanine nucleotides did not support cyclase activity. DMSO-permeabilized cells exhibit efficient Mn2+- and Mg2+/Gpp[NH]p-dependent stimulation. Furthermore, digitonin added to yeast membranes at a 1:50 detergent to protein ratio (w/w) abolishes guanyl nucleotide regulation without significantly affecting the Mn2+-supported cyclase activity. The superiority of DMSO is further supported by the fact that recovery of adenylate cyclase activity is better in the DMSO-treated cells than in the digitonin-treated cells. DMSO most probably causes less disturbance of the fabric of the native cell. We conclude that digitonin, but not DMSO, uncouples the catalytic unit of adenylate cyclase from the regulatory GTP binding (ras) proteins.  相似文献   

15.
1. Activation of adenylate cyclase in rat liver plasma membranes by fluoride or GMP-P (NH)P yielded linear Arrheniun plots. Activation by glucagon alone, or in combination with either fluoride or GMP-P(NH)P resulted in biphasic Arrhenius plots with a well-defined break at 28.5 +/- 1 degrees C. 2. The competitive glucagon antagonist, des-His-glucagon did not activate the adenylate cyclase but produced biphasic Arrhenius plots in combination with fluoride or GMP-P(NH)P. The break temperatures and activation energies were very similar to those observed with glucagon alone, or in combination with either fluoride or GMP-P(NH)P. 3. It is concluded that although des-His-glucagon is a potent antagonist of glucagon, it nevertheless causes a structural coupling between the receptor and the catalytic unit.  相似文献   

16.
Effect of prostacyclin (PGI2) on adenylate cyclase activity in human thyroid membranes was examined. PGI2 caused a dose- and time-dependent production of cyclic AMP (cAMP) with high potency. When GTP was added in concentrations up to 100 uM, the activation of adenylate cyclase by PGI2 was increased. In the assay medium containing 3 mM ATP, 10 uM GTP and nucleotide regenerating system, the replacement of Mg2+ by increasing concentrations of Mn2+ caused a progressive loss of PGI2 as well as TSH-stimulated adenylate cyclase activities, while high concentrations of Mg2+ (12 or 18 mM) slightly suppressed the activity stimulated by either PGI2 or TSH. Both agents had an additive effect on the stimulation of adenylate cyclase activity in the presence of either 6 mM Mg2+ or 6 mM Mn2+. Gamma-globulin fraction containing non-stimulatory TSH receptor antibody which was prepared from a patient with chronic thyroiditis, suppressed only TSH- but not PGI2-stimulation of the adenylate cyclase activity. These results suggest that PGI2 can stimulate the adenylate cyclase activity in human thyroid tissue, and that PGI2-stimulation may be mediated by the different system from TSH-dependent one.  相似文献   

17.
Adenylate cyclase (EC 4.6.1.1) activity in mouse liver plasma membranes is increased fivefold when animals are pretreated with cholera toxin. The increase in activity is detectable within 20 min of an intravenous injection of the toxin. The response of the control and cholera-toxin-activated adenylate cyclase to hormones, GTP, and NaF is complex. GTP causes the same fold stimulation of control and toxin-activated cyclase, but glucagon and NaF remain the most potent activators of liver adenylate cyclase irrespective of whether the enzyme is activated by cholera toxin. Determination of kinetic parameters of adenylate cyclase indicates that cholera toxin, hormones, and NaF do not change the affinity of the enzyme for ATP-Mg nor do they alter the Ka for free Mg2+. High concentrations of Mg2+ inhibit adenylate cyclase that is stimulated by either cholera toxin, glucagon, or NaF. These same Mg2+ concentrations have no effect on the basal activity of the enzyme or its activity in the presence of GTP.  相似文献   

18.
A novel site of action of a high affinity A1 adenosine receptor antagonist   总被引:4,自引:0,他引:4  
XAC, a high affinity antagonist of the A1 adenosine receptor, enhances adenylate cyclase activity by 1.3-2 fold with an EC50 of approximately 47 nM in adipocyte membranes pretreated with adenosine deaminase to eliminate adenosine and in the presence of total phosphodiesterase inhibition by 100 microM papaverine. This effect of XAC is observed only at concentrations of GTP sufficient to activate Gi (approximately 5 x 10(-6) M GTP) and is not evident in the absence or presence of lower GTP concentrations. ADP ribosylation of Gi by pertussis toxin treatment also abolishes this stimulatory action of XAC. Furthermore, in the presence of GTP activation of inhibitory prostaglandin E1 receptors diminishes the stimulatory effect of XAC on adenylate cyclase. In addition, XAC interferes with GTP-mediated inhibition of forskolin-stimulated adenylate cyclase activity in a noncompetitive manner. Finally, XAC is only a weak inhibitor of the low Km cyclic AMP phosphodiesterase, producing approximately 40% inhibition of phosphodiesterase activity at a concentration of 100 microM. These data suggest that XAC increases adenylate cyclase activity in absence of endogenous adenosine by inhibiting tonic Gi activity in a reversible manner.  相似文献   

19.
A thyroliberin (TRH)-responsive particulate bound adenylyl cyclase is present in two rat anterior pituitary tumor cell strains (GH4C1 and GH3) which synthesize and secrete prolactin. At a given Mg2+ concentration, ATP and the guanyl nucleotides GTP and guanyl 5'-yl-imidodiphosphate (GMP-P(NH)P) caused a dose-dependent increase in adenylyl cyclase activity. The maximum response to thyroliberin occurred with ATP and GTP at concentrations above 0.30 mM and 2 microM, respectively. The maximal stimulatory effect of thyroliberin on adenylyl cyclase activity was 2-fold in the presence of GTP. GMP-P(NH)P increased the basal enzyme activity 4- to 10-fold over and above that of equimolar concentrations of GTP but supported poorly the TRH-induced response. Mg2+ caused a dose-dependent increase in the basal enzyme activity and reduced TRH and fluoride-induced responses. Also, Mn2+ and Co2+ stimulated the basal adenylyl cyclase activity while Zn2+, Ca2+, and Cu2+ inhibited the enzyme, and neither cations supported the TRH response. Half-maximal stimulation of the adenylyl cyclase by TRH and half-maximum binding of [3H]TRH to membranes at 35 degrees C were 102 and 56 nM, respectively. Pretreatment with TRH decreased the apparent Vmax of the enzyme and the maximal binding of [3H]TRH. Of 6 TRH analogs tested, only one was able to displace [3H]TRH from its receptor and to increase the adenylyl cyclase activity. We suggest that adenylyl cyclase activation is an early event in the stimulus secretion coupling between TRH and prolactin-producing GH cells.  相似文献   

20.
The influence of the diterpene, forskolin, was studied on adenylate cyclase activity in membranes of rat basophilic leukemia cells. Forskolin increased basal adenylate cyclase activity maximally 2-fold at 100 microM. However, adenylate cyclase activity stimulated via the stimulatory guanine nucleotide-binding protein, Ns, by fluoride and the stable GTP analog, guanosine 5'-O-(3-thiotriphosphate), was inhibited by forskolin. Half-maximal and maximal inhibition occurred at about 1 and 10 microM forskolin, respectively. The inhibition occurred without an apparent lag phase, whereas the enzyme stimulation by forskolin was preceded by a considerable lag period. The inhibition was not affected by treating intact cells or membranes with pertussis toxin and proteolytic enzymes, respectively, which have been shown in other cell types to prevent adenylate cyclase inhibition mediated by the guanine nucleotide-binding regulatory component, Ni. The forskolin inhibition of the stable GTP analog-activated adenylate cyclase was impaired by increasing the Mg2+ concentration and was reversed into a stimulation by Mn2+. Under optimal inhibitory conditions, forskolin even decreased basal adenylate cyclase activity. Finally, forskolin largely reduced the apparent affinity of the rat basophilic leukemia cell adenylate cyclase for its substrate, MgATP, which reduction resulted in an apparent inhibition at low MgATP concentrations and a loss of the inhibition at higher MgATP concentrations. The data indicate that forskolin can cause both stimulation and inhibition of adenylate cyclase and, furthermore, they suggest that the inhibition may not be mediated by the Ni protein, but may be caused by a direct action of forskolin at the adenylate cyclase catalytic moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号