首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of bovine brain has been prohibited in many countries because of the world-wide prevalence of mad cow disease, and thus porcine brain is expected to be a new source for the preparation of gangliosides. Here, we report the presence of a ganglioside in porcine brain which is strongly resistant to hydrolysis by endoglycoceramidase, an enzyme capable of cleaving the glycosidic linkage between oligosaccharides and ceramides of various glycosphingolipids. Five major gangliosides (designated PBG-1, 2, 3, 4, 5) were extracted from porcine brain by Folch's partition, followed by mild alkaline hydrolysis and PBA column chromatography. We found that PBG-2, but not the others, was strongly resistant to hydrolysis by the enzyme. After the purification of PBG-2 with Q-Sepharose, Silica gel 60 and Prosep-PB chromatographies, the structure of PBG-2 was determined by GC, GC-MS, FAB-MS and NMR spectroscopy as Fucalpha1-2Galbeta1-3GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-4Glcbeta1-1'Cer (fucosyl-GM1a). The ceramide was mainly composed of C18:0 and C20:0 fatty acids and d18:1 and d20:1 sphingoid bases. The apparent kcat/Km for fucosyl-GM1a was found to be 30 times lower than that for GM1a, indicating that terminal fucosylation makes GM1a resistant to hydrolysis by the enzyme. This report indicates the usefulness of endoglycoceramidase to prepare fucosyl-GM1a from porcine brain.  相似文献   

2.
Fucose is a major constituent of the protein- and lipid-linked glycans of the various life-cycle stages of schistosomes. These fucosylated glycans are highly antigenic and seem to play a role in the pathology of schistosomiasis. In this article we describe the identification and characterization of two fucosyltransferases (FucTs) in cercariae of the avian schistosome Trichobilharzia ocellata, a GDP-Fuc:[Galbeta1-- >4]GlcNAcbeta-R alpha1-->3-FucT and a novel GDP-Fuc:Fucalpha-R alpha1-- >2-FucT. Triton X-100 extracts of cercariae were assayed for FucT activity using a variety of acceptor substrates. Type 1 chain (Galbeta1- ->3GlcNAc) based compounds were poor acceptors, whereas those based on a type 2 chain (Galbeta1-->4GlcNAc), whether alpha2'-fucosylated, alpha3'-sialylated, or unsubstituted, and whether present as oligosaccharide or contained in a glycopeptide or glycoprotein, all served as acceptor substrates. In this respect the schistosomal alpha3- FucT resembles human FucT V and VI rather than other known FucTs. N- ethylmaleimide, an inhibitor of several human FucTs, had no effect on the activity of the schistosomal alpha3-FucT, whereas GDP-beta-S was strongly inhibitory. Large scale incubations were carried out with Galbeta1-->4GlcNAc, GalNAcbeta1-->4GlcNAcbeta-O -(CH2)8COOCH3 and Fucalpha1-->3GlcNAcbeta1-->2Man as acceptor substrates and the products of the incubations were isolated using a sequence of chromatographic techniques. By methylation analysis and 2D-TOCSY and ROESY1H-NMR spectroscopy the products formed were shown to be Galbeta1-- >4[Fucalpha1-->2Fucalpha1-->3]GlcNAc, GalNAcbeta1-->4[Fucalpha1-- >2Fucalpha1-->3]GlcNAcbe ta-O-(CH2)8COOCH3, and Fucalpha1-->2Fucalpha1-- >3GlcNAcbeta1-->2Man, respectively. It is concluded that the alpha2- FucT and alpha3-FucT are involved in the biosynthesis of the (oligomeric) Lewisx sequences and the Fucalpha1-->2Fucalpha1-->3GlcNAc structural element that have been described on schistosomal glycoconjugates.   相似文献   

3.
Human alpha3-fucosyltransferases (Fuc-Ts) are known to convert N-acetyllactosamine to Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis x antigen); some of them transfer fucose also to GalNAcbeta1-4GlcNAc, generating GalNAcbeta1-4(Fucalpha1-3)GlcNAc determinants. Here, we report that recombinant forms of Fuc-TV and Fuc-TVI as well as Fuc-Ts of human milk converted chitin oligosaccharides of 2-4 GlcNAc units efficiently to products containing a GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-4R determinant at the nonreducing terminus. The product structures were identified by mass spectrometry and nuclear magnetic resonance experiments; rotating frame nuclear Overhauser spectroscopy data suggested that the fucose and the distal N-acetylglucosamine are stacked in the same way as the fucose and the distal galactose of the Lewis x determinant. The products closely resembled a nodulation factor of Mesorhizobium loti but were distinct from nodulation signals generated by NodZ-enzyme.  相似文献   

4.
Edible fungi, mushrooms, are a popular food in Japan and over 15 cultured mushroom species are available at the food markets. Recently, constituents or ingredients of edible mushrooms have drawn attention because possibilities have been seen for their medical usage. Mycoglycolipids (basidiolipids) of higher mushrooms have been characterized as glycosylinositolphosphoceramides, having a common core structure of Manalpha1-2Ins1-[PO(4)]-Cer and extensions of Man, Gal, and/or Fuc sugar moieties. Seven mycoglycolipids were purified from the edible mushroom Hypsizygus marmoreus by successive column chromatography on ion exchange Sephadex (DEAE-Sephadex) and silicic acid (Iatrobeads). Their structures were characterized to be Ins1-[PO(4)]-Cer (AGL0), Manalpha1-2Ins1-[PO(4)]-Cer (AGL1), Galbeta1-6Manalpha1-2Ins1-[PO(4)]-Cer (AGL2), Fucalpha1- 2Galbeta1-6Manalpha1-2Ins1-[PO(4)]-Cer (AGL3), Galalpha1-3(Fucalpha1-2)Galbeta1-6Manalpha1-2Ins1-[PO(4)]-Cer (AGL4), Galalpha1-2Galalpha1-3(Fucalpha1-2)Galbeta1-6Manalpha1-2Ins1-[PO(4)]-Cer (AGL5), and Galalpha1-2Galalpha1-2Galalpha1-3(Fucalpha1-2)Galbeta1-6Manalpha1-2Ins1-[PO(4)]-Cer (AGL6) by sugar compositional analysis, methylation analysis, periodate oxidation, partial acid hydrolysis, enzymatic hydrolysis, immunochemical analysis, gas-liquid chromatography (GC), gas chromatography-mass spectrometry (GC-MS), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and (1)H-nuclear magnetic resonance spectroscopy (NMR). Ceramide constituents of their mycoglycolipids were composed of phytosphingosine as the sole sphingoid, and mainly 2-hydroxy C22:0 and C24:0 acids as the fatty acids. By immunochemical detection, the terminal structure of AGL4, Galalpha1-3(Fucalpha1-2)Galbeta-, was shown to have blood group type B activity. Galalpha1-2 and its repeating sequence in AGL5 and AGL6 are novel structures on the nonreducing sugar end in mycoglycolipids. These two mycoglycolipids in H. marmoreus distinguish it from other basidiomycetes.  相似文献   

5.
The carbohydrate binding preferences of the Galalpha3Galbeta4 GlcNAc-binding lectins from Marasmius oreades and Euonymus europaeus were examined by binding to glycosphingolipids on thin-layer chromatograms and in microtiter wells. The M. oreades lectin bound to Galalpha3-terminated glycosphingolipids with a preference for type 2 chains. The B6 type 2 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) was preferred over the B5 glycosphingolipid (Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), suggesting that the alpha2-linked Fuc is accommodated in the carbohydrate binding site, providing additional interactions. The lectin from E. europaeus had broader binding specificity. The B6 type 2 glycosphingolipid was the best ligand also for this lectin, but binding to the B6 type 1 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer) was also obtained. Furthermore, the H5 type 2 glycosphingolipid (Fucalpha2Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), devoid of a terminal alpha3-linked Gal, was preferred over the the B5 glycosphingolipid, demonstrating a significant contribution to the binding affinity by the alpha2-linked Fuc. The more tolerant nature of the lectin from E. europaeus was also demonstrated by the binding of this lectin, but not the M. oreades lectin, to the x2 glycosphingolipid (GalNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer. The A6 type 2 glycosphingolipid (GalNAcalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GalNAcalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer were not recognized by the lectins despite the interaction with B6 type 2 glycosphingolipid and the B5 glycosphingolipid. These observations are explained by the absolute requirement of a free hydroxyl in the 2-position of Galalpha3 and that the E. europaea lectin can accommodate a GlcNAc acetamido moiety close to this position by reorienting the terminal sugar, whereas the M. oreades lectin cannot.  相似文献   

6.
Sialic acid binding is required for infectious cell surface receptor recognition by parvovirus minute virus of mice (MVM). We have utilized a glycan array consisting of approximately 180 different carbohydrate structures to identify the specific sialosides recognized by the prototype (MVMp) and immunosuppressive (MVMi) strains of MVM plus three virulent mutants of MVMp, MVMp-I362S, MVMp-K368R, and MVMp-I362S/K368R. All of the MVM capsids specifically bound to three structures with a terminal sialic acid-linked alpha2-3 to a common Galbeta1-4GlcNAc motif: Neu5Acalpha2-3Galbeta1-4GlcNAcbeta1-4Galbeta1-4GlcNAc (3'SiaLN-LN), Neu5Acalpha2-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc (3'SiaLN-LN-LN), and Neu5Acalpha2-3Galbeta1-4(Fucalpha1-3)-GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAc (sLe(x)-Le(x)-Le(x)). In addition, MVMi also recognized four multisialylated glycans with terminal alpha2-8 linkages: Neu5Acalpha2-8Neu5Acalpha2-8Neu5Acalpha ((Sia)(3)), Neu5Acalpha2-8Neu5Acalpha2-3Galbeta1-4Glc (GD3), Neu5Acalpha2-8Neu5Acalpha2-8Neu5Acalpha2-3Galbeta1-4Glc (GT3), and Neu5Acalpha2-8Neu5Acalpha2-3(GalNAcbeta1-4)Galbeta1-4Glc (GD2). Interestingly, the virulent MVMp-K368R mutant also recognized GT3. Analysis of the relative binding affinities using a surface plasmon resonance biospecific interaction (BIAcore) assay showed the wild-type MVMp and MVMi capsids binding with higher affinity to selected glycans compared with the virulent MVMp mutants. The reduced affinity of the virulent MVMp mutants are consistent with previous in vitro cell binding assays that had shown weaker binding to permissive cells compared with wild-type MVMp. This study identifies the sialic acid structures recognized by MVM. It also provides rationale for the tropism of MVM for malignant transformed cells that contain sLe(x) motifs and the neurotropism of MVMi, which is likely mediated via interactions with multisialylated glycans known to be tumor cell markers. Finally, the observations further implicate a decreased binding affinity for sialic acid in the in vivo adaptation of MVMp to a virulent phenotype.  相似文献   

7.
The development of the humoral anti-glycan immune response of chimpanzees, either or not vaccinated with radiation-attenuated Schistosoma mansoni cercariae, was followed during 1 year after infection with S. mansoni. During the acute phase of infection both the vaccinated and the control chimpanzees produce high levels of immunoglobulin G (IgG) antibodies against carbohydrate structures that are characteristic for schistosomes carrying the Fucalpha1-3GalNAc and Fucalpha1-2Fucalpha1-3GlcNAc motifs, but not to the more widespread occurring structures GalNAcbeta1-4GlcNAc, GalNAcbeta1-4(Fucalpha1-3)GlcNAc, and Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis(x)). In addition, high levels of IgM antibodies were found against the trimeric Lewis(x) epitope. Apparently, the schistosome-characteristic carbohydrate structures are dominant epitopes in the anti-glycan humoral immune response of the chimpanzees. All chimpanzees showed an increase in the level of antibodies against most of the carbohydrate structures tested directly after vaccination, peaking at challenge time and during the acute phase of infection. With the exception of anti-F-LDN antibody responses, the anti-carbohydrate antibody responses upon schistosome infection of the vaccinated animals were muted in comparison to the control animals.  相似文献   

8.
9.
Urine of a fucosidosis patient contained a large amount of fucosyl oligosaccharides and fucose-rich glycopeptides. Six major oligosaccharides were purified by a combination of Bio-Gel P-2 and P-4 column chromatographies and paper chromatography. Structural studies by sequential exoglycosidase digestion and by methylation analysis revealed that their structures were as follows: Fucalpha1 leads to 6GlcNAc, Fucalpha1 leads to 2Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 2Manalpha1 leads to 3Manbeta1 leads to 4GlcNAc, Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 4Manalpha1 leads to 4GlcNAc, Galbeta1 leads to 4(Fucalpha1 leads to3)GlcNAcbeta1 leads to 2Manalpha1 leads to 6Manbeta1 leads to 4GlcNAc, and Galbeta1 leads to 4(Fucalpha1 leads to 3)GlcNAcbeta1 leads to 4Manalpha1 leads to 6Manalpha1 leads to 6Manbeta1 leads to 4GlcNAc. In additon, the structure of a minor decasaccharide was found to be Galbeta1 leads to (Fucalpha1 leads to)GlcNAcbeta1 leads to Manalpha1 leads to [Galbeta1 leads to (Fucalpha1 leads to)GlcNAcbeta1 leads to Manalpha1 leads to]Manbeta1 leads to 4GlcNAc.  相似文献   

10.
A pair of novel neutral glycosphingolipids (Ngsls) has been identified in bovine brain. Their mobilities on thin layer chromatography were slightly different from a standard pentaglycosylceramide (nLcOse(5)Cer from bovine erythrocytes). The compounds were purified to homogeneity by column chromatography. Their fatty acid and base compositions, their monosaccharide compositions and sugar linkage positions were determined by gas-liquid chromato-graphy/mass spectrometry. Carbohydrate sequence analy-sis by(1)H NMR spectroscopy and stepwise exoglyco-sidase digestion indicated the following pentaglycosyl structure for the oligosaccharide moiety of both Ngsls: GalNAcbeta1-4Galbeta1-3GalNAcbeta1-4Galbeta1-4Gl c. The two Ngsls (abbreviated as IV(4)GalNAcGgOse(4)Cer or GalNAc-GA1), differ in their ceramide compositions, having d18:0 and d18:1 sphingosine as their long chain bases. A monospecific polyclonal anti-GalNAc-GA1 antibody, prepared in rabbit and purified by affinity chromatography, stained the neurons of cerebral cortex and cerebellum including Purkinje cells in adult rat brain, indicating that the novel GalNAc-GA1 is associated with cerebellar and other neurons in vertebrate central nervous system.  相似文献   

11.
Sialoglycans on the cell surface of human colon cancer (HCC) cells have been implicated in cellular adhesion and metastasis. To clarify the role of N-acetylneuraminic acid (NeuAc) linked alpha2,3 to galactose (Gal) on the surface of HCC cells, we studied the intercellular adhesion of HCC cell lines expressing increasing NeuAcalpha2,3Gal-R. Our model system consisted of the HCC SW48 cell line, which inherently possesses low levels of cell surface alpha2,3 and alpha2,6 sialoglycans. To generate SW48 clonal variants with elevated cell surface NeuAcalpha2,3Gal-R linkages, we transfected the expression vector, pcDNA3, containing either rat liver cDNA encoding Galbeta1,3(4)GlcNAc alpha2,3 sialyltransferase (ST3Gal III) or human placental cDNA encoding Galbeta1,3GalNAc/Galbeta1,4GlcNAc alpha2,3 sialyltransferase (ST3Gal IV) into SW48 cells. Selection of neomycin-resistant clones (600 microgram G418/ml) having a higher percentage of cells expressing NeuAcalpha2,3Gal-R (up to 85% positive Maackia amurenis agglutinin staining compared with 30% for wild type cells) was performed. These ST3Gal III and ST3Gal IV clonal variants demonstrated increased adherence to IL-1beta-activated human umbilical vein endothelial cells (HUVEC) (up to 90% adherent cells compared with 63% for wild type cells). Interestingly, ST3Gal III and ST3Gal IV clonal variants also bound non-activated HUVEC up to 4-fold more effectively than wild type cells. Cell surface NeuAcalpha2,3Gal-R expression within the various SW48 clonal variants correlated directly with increased adhesion to HUVEC (r=0.84). Using HCC HT-29 cells, which express high levels of surface NeuAcalpha2,3Gal-R, addition of synthetic sialyl, sulfo or GalNAc Lewis X structures were found to specifically inhibit intercellular adhesion. At 1.0mM, NeuAcalpha2,3Galbeta1,3(Fucalpha1, 4)GlcNAc-OH and Galbeta1,4(Fucalpha1,3)GlcNAcbeta1,6(SE-6Galbeta1++ +, 3)GalNAcalpha1-O-methyl inhibited HT-29 cell adhesion to IL-1beta-stimulated HUVEC by 100% and 68%, respectively. GalNAcbeta1, 4(Fucalpha1,3)GlcNAcbeta1-O-methyl and GalNAcbeta1,4(Fucalpha1, 3)GlcNAcbeta1,6Manalpha1,6Manbeta1-0-C30H61, however, did not possess inhibitory activity. In conclusion, these studies demonstrated that cell surface NeuAcalpha2,3Gal-R expression is involved in HCC cellular adhesion to HUVEC. These specific carbohydrate-mediated intercellular adhesive events may play an important role in tumor angiogenesis, metastasis and growth control.  相似文献   

12.
13.
The selectins interact in important normal and pathological situations with certain sialylated, fucosylated glycoconjugate ligands containing sialyl Lewisx(Neu5Acalpha2-3Galbeta1-4(Fucalpha1-3)GlcN Ac). Much effort has gone into the synthesis of sialylated and sulfated Lewisxanalogs as competitive ligands for the selectins. Since the natural selectin ligands GlyCAM-1 and PSGL-1 carry sialyl Lewisxas part of a branched Core 2 O-linked structure, we recently synthesized Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(SE-3Galbeta1++ +-3)GalNAc1alphaOMe and found it to be a moderately superior ligand for L and P-selectin (Koenig et al. , Glycobiology 7, 79-93, 1997). Other studies have shown that sulfate esters can replace sialic acid in some selectin ligands (Yeun et al. , Biochemistry, 31, 9126-9131, 1992; Imai et al. , Nature, 361, 555, 1993). Based upon these observations, we hypothesized that Neu5Acalpha2-3Galbeta1-3GalNAc might have the capability of interacting with L- and P-selectin. To examine this hypothesis, we synthesized Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(Neu5Acalpha2++ +-3Galbeta1-3)- GalNAc alpha1-OB, which was found to be 2- to 3-fold better than sialyl Lexfor P and L selectin, respectively. We also report the synthesis of an unusual structure GalNAcbeta1-4(Fucalpha1- 3)GlcNAcbeta1-OMe (GalNAc- Lewisx-O-methyl glycoside), which also proved to be a better inhibitor of L- and P-selectin than sialyl Lewisx-OMe. Combining this with our knowledge of Core 2 branched structures, we have synthesized a molecule that is 5- to 6-fold better at inhibiting L- and P-selectin than sialyl Lewisx-OMe, By contrast to unbranched structures, substitution of a sulfate ester group for a sialic acid residue in such a molecule resulted in a considerable loss of inhibition ability. Thus, the combination of a sialic acid residue on the primary (beta1-3) arm, and a modified Lexunit on the branched (beta1-6) arm on an O-linked Core 2 structure generated a monovalent synthetic oliogosaccharide inhibitor superior to SLexfor both L- and P-selectin.   相似文献   

14.
Glycans containing the GalNAcbeta1-4GlcNAc (LacdiNAc or LDN) motif are expressed by many invertebrates, but this motif also occurs in vertebrates and is found on several mammalian glycoprotein hormones. This motif contrasts with the more commonly occurring Galbeta1-4GlcNAc (LacNAc or LN) motif. To better understand LDN biosynthesis and regulation, we stably expressed the cDNA encoding the Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase (GalNAcT), which generates LDN in vitro, in Chinese hamster ovary (CHO) Lec8 cells, to establish L8-GalNAcT CHO cells. The glycan structures from these cells were determined by mass spectrometry and linkage analysis. The L8-GalNAcT cell line produces complex-type N-glycans quantitatively bearing LDN structures on their antennae. Unexpectedly, most of these complex-type N-glycans contain novel "poly-LDN" structures consisting of repeating LDN motifs (-3GalNAcbeta1-4GlcNAcbeta1-)n. These novel structures are in contrast to the well known poly-LN structures consisting of repeating LN motifs (-3Galbeta1-4GlcNAcbeta1-)n. We also stably expressed human alpha1,3-fucosyltransferase IX in the L8-GalNAcT cells to establish a new cell line, L8-GalNAcT-FucT. These cells produce complex-type N-glycans with alpha1,3-fucosylated LDN (LDNF) GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-R as well as novel "poly-LDNF" structures (-3GalNAcbeta1-4(Fucalpha 1-3)GlcNAcbeta1-)n. The ability of these cell lines to generate glycoprotein hormones with LDN-containing N-glycans was studied by expressing a recombinant form of the common alpha-subunit in L8-GalNAcT cells. The alpha-subunit N-glycans carried LDN structures, which were further modified by co-expression of the human GalNAc 4-sulfotransferase I, which generates SO4-4GalNAcbeta1-4GlcNAc-R. Thus, the generation of these stable mammalian cells will facilitate future studies on the biological activities and properties of LDN-related structures in glycoproteins.  相似文献   

15.
A ganglioside of unknown structure (ganglioside X) was purified from chicken brain at embryonic day 12 (E12) and characterized for its structure. Ganglioside X was reactive with a monoclonal antibody A2B5 and migrated below GH1c on thin-layer chromatography (TLC). Extensive treatment of ganglioside X with Clostridium perfringens sialidase produced a single ganglioside product. This ganglioside was identified as GM1 based upon its chromatographic mobility and reactivity to cholera toxin B subunit and anti-GM1 antibody. Partial hydrolysis of ganglioside X by sialidase generated several degradation products including GH1c, GP1c, and GQ1c. Electrospray ionization (ESI)-mass spectrometry (MS) of the permethylated derivative of ganglioside X produced a triple-charged parent ion peak at m/z 1355, which corresponded with the gangliotetraose oligosaccharide structure having seven sialic acids and ceramide with the molecular mass of 566 (as non-methylated form). Collision-induced dissociation (CID)-MS(2) showed fragment ions including those at m/z 1066 and 1931; these two ions matched the structures of (NeuAc)(3)-Gal-Glc-Cer and (NeuAc)(4)-Gal-GalNAc, respectively. These structures were confirmed by CID-MS(3) of the corresponding peaks. Based upon these findings, the structure of ganglioside X was identified as NeuAc-NeuAc-NeuAc-NeuAc-Galbeta1-3GalNAcbeta1-4(NeuAc-NeuAc-NeuAcalpha2-3)Galbeta1-4Glcbeta1-1'Cer. This ganglioside was designated as GS1c. A developmental study demonstrated that GS1c was expressed in chicken brain during a period from E6 to E13 and thereafter decreased rapidly in its concentration. The present study suggests that GS1c may play a specific role in early development of chicken brain.  相似文献   

16.
We report that isomeric monofucosylhexasaccharides, Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4(Fucalpha1-3) GlcNAc, Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4 GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 GlcNAc, and bifucosylhexasaccharides Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAc, Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 (Fucalpha1-3)GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4( Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4GlcNAc can be isolated in pure form from reaction mixtures of the linear hexasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4GlcNAc with GDP-fucose and alpha1,3-fucosyltransferases of human milk. The pure isomers were characterized in several ways;1H-NMR spectroscopy, for instance, revealed distinct resonances associated with the Lewis x group [Galbeta1-4(Fucalpha1-3)GlcNAc] located at the proximal, middle, and distal positions of the polylactosamine chain. Chromatography on immobilized wheat germ agglutinin was crucial in the separation process used; the isomers carrying the fucose at the reducing end GlcNAc possessed particularly low affinities for the lectin. Isomeric monofucosyl derivatives of the pentasaccharides GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1- 4Gl cNAc and Galalpha1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4G lcN Ac and the tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc were also obtained in pure form, implying that the methods used are widely applicable. The isomeric Lewis x glycans proved to be recognized in highly variable binding modes by polylactosamine-metabolizing enzymes, e.g., the midchain beta1,6-GlcNAc transferase (Lepp?nen et al., Biochemistry, 36, 13729-13735, 1997).  相似文献   

17.
We have isolated a nonfucosylated and three variously fucosylated neutral oligosaccharides from human milk that are based on the iso-lacto-N-octaose core. Their structures were characterized by the combined use of electrospray mass spectrometry (ES-MS) and NMR spectroscopy. The branching pattern and blood group-related Lewis determinants, together with partial sequences and linkages of these oligosaccharides, were initially elucidated by high-sensitivity ES-MS/MS analysis, and then their full structure assignment was completed by methylation analysis and 1H-NMR. Three new structures were identified. The nonfucosylated iso-lacto-N-octaose, Galbeta1-3GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-6[Galbeta1-3GlcNAcbeta1-3]Galbeta1-4Glc, has not previously been reported as an individual oligosaccharide. The monofucosylated and trifucosylated iso-lacto-N-octaose, Galbeta1-3GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-6[Galbeta1-3GlcNAcbeta1-3]Galbeta1-4Glc and Galbeta1-3(Fucalpha1-4)GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6[Galbeta1-3(Fucalpha1-4)GlcNAcbeta1-3]Galbeta1-4Glc, both containing an internal Lex epitope, are also novel structures.  相似文献   

18.
Murine sperm initiate fertilization by binding to specific oligosaccharides linked to the zona pellucida, the specialized matrix coating the egg. Biophysical analyses have revealed the presence of both high mannose and complex-type N-glycans in murine zona pellucida. The predominant high mannose-type glycan had the composition Man(5)GlcNAc(2), but larger oligosaccharides of this type were also detected. Biantennary, triantennary, and tetraantennary complex-type N-glycans were found to be terminated with the following antennae: Galbeta1-4GlcNAc, NeuAcalpha2-3Galbeta1-4GlcNAc, NeuGcalpha2-3Galbeta1-4GlcNAc, the Sd(a) antigen (NeuAcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc, NeuGcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc), and terminal GlcNAc. Polylactosamine-type sequence was also detected on a subset of the antennae. Analysis of the O-glycans indicated that the majority were core 2-type (Galbeta1-4GlcNAcbeta1-6[Galbeta1-3]GalNAc). The beta1-6-linked branches attached to these O-glycans were terminated with the same sequences as the N-glycans, except for terminal GlcNAc. Glycans bearing Galbeta1-4GlcNAcbeta1-6 branches have previously been suggested to mediate initial murine gamete binding. Oligosaccharides terminated with GalNAcbeta1-4Gal have been implicated in the secondary binding interaction that occurs following the acrosome reaction. The significant implications of these observations are discussed.  相似文献   

19.
The genome of Caenorhabditis elegans encodes five genes with homology to known alpha1,3 fucosyltransferases (alpha1,3FTs), but their expression and functions are poorly understood. Here we report the molecular cloning and characterization of these C. elegans alpha1,3FTs (CEFT-1 through -5). The open-reading frame for each enzyme predicts a type II transmembrane protein and multiple potential N-glycosylation sites. We prepared recombinant epitope-tagged forms of each CEFT and found that they had unusual acceptor specificity, cation requirements, and temperature sensitivity. CEFT-1 acted on the N-glycan pentasaccharide core acceptor to generate Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-Asn. In contrast, CEFT-2 did not act on the pentasaccharide acceptor, but instead utilized a LacdiNAc acceptor to generate GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc, which is a novel activity. CEFT-3 utilized a LacNAc acceptor to generate Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc without requiring cations. CEFT-4 was similar to CEFT-3, but its activity was enhanced by some divalent cations. Recombinant CEFT-5 was well expressed, but did not act on available acceptors. Each CEFT was optimally active at room temperature and rapidly lost activity at 37 degrees C. Promoter analysis showed that CEFT-1 is expressed in C. elegans eggs and adults, but its expression was restricted to a few neuronal cells at the head and tail. We prepared deletion mutants for each enzyme for phenotypic analysis. While loss of CEFT-1 correlated with loss of pentasaccharide core activity and core alpha1,3-fucosylated glycans in worms, loss of other enzymes did not correlate with any phenotypic changes. These results suggest that each of the alpha1,3FTs in C. elegans has unique specificity and expression patterns.  相似文献   

20.
Specificity of DC-SIGN for mannose- and fucose-containing glycans   总被引:1,自引:0,他引:1  
The dendritic cell specific C-type lectin dendritic cell specific ICAM-3 grabbing non-integrin (DC-SIGN) binds to "self" glycan ligands found on human cells and to "foreign" glycans of bacterial or parasitic pathogens. Here, we investigated the binding properties of DC-SIGN to a large array of potential ligands in a glycan array format. Our data indicate that DC-SIGN binds with K(d)<2muM to a neoglycoconjugate in which Galbeta1-4(Fucalpha1-3)GlcNAc (Le(x)) trisaccharides are expressed multivalently. A lower selective binding was observed to oligomannose-type N-glycans, diantennary N-glycans expressing Le(x) and GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LacdiNAc-fucose), whereas no binding was observed to N-glycans expressing core-fucose linked either alpha1-6 or alpha1-3 to the Asn-linked GlcNAc of N-glycans. These results demonstrate that DC-SIGN is selective in its recognition of specific types of fucosylated glycans and subsets of oligomannose- and complex-type N-glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号