首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both temperature-stable and temperature-labile testicular cholesteryl ester hydrolases are shown to be regulated by an endogenous cAMP-dependent protein kinase activity. The temperature-stable form (Mr = 28,000) was activated 3-fold by the endogenous kinase. This activation was completely blocked by protein kinase inhibitor. Following purification by high performance gel permeation chromatography, the temperature-stable form could also be activated 2-fold by bovine heart protein kinase, type I. The partially purified endogenous protein kinase, type I, which was completely separated from hydrolase activity by ion exchange chromatography, increased hydrolase activity 2-fold in the presence of optimal concentrations of cAMP, ATP, and Mg2+. Cholesteryl ester hydrolase activity could be stabilized indefinitely at -10 degrees C with the addition of 0.1 mM thioglycolate, but not by other thiol reagents. In contrast, the endogenous protein kinase activity was lost from 104,000 X g supernatants after 14 days. However, the property of activation could be restored by addition of bovine heart protein kinase. The temperature-labile hydrolase (Mr = 72,000) could be totally inactivated by a Mg2+-dependent, fluoride-sensitive cytosolic factor and reactivated by cAMP-dependent protein kinase. These observations strongly suggest that the inactivating factor is a phosphoprotein phosphatase.  相似文献   

2.
Mouse testes were cultured for 19--20 days at either 31 or 37 degrees C with a change of medium every 4 days. After treatment with charcoal and dextran T, the recovered testis media were incubated with rat anterior pituitary cells, and secretions of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were estimated by radioimmunoassay 3 days later. FSH release was significantly lowered when pituitary cells were grown with media of testes cultured 31 degrees C compared to cultures grown with fresh medium or with media of testes cultured at 37 degrees C for more than 4 days. LH secretion was normal in one experiment and reduced in the other with the media of testes cultured at 31 degrees C. Treatment of testicular media by heat or trypsin reduced the inhibiting activity. After 8 days at 37 degrees C, both germinal and Sertoli cells were damaged in the testis cultures, while at 31 degrees germinal cells alone were destroyed, Sertoli cells remained normal. These studies suggest that (1) a substance which responds to the definition of inhibition (protein--preferentially acting on FSH) is secreted in the medium of testis culture; (2) inhibin is produced by Sertoli cells; (3) inhibin is secreted only if the temperature is inferior to 37 degrees C.  相似文献   

3.
Differential scanning calorimetry and polarizing light microscopy have been used to investigate kinetic and thermodynamic properties of the phase behavior of cholesteryl ester contained in Fu5AH rat hepatoma cells and J774 murine macrophages. These cultured cells store cholesteryl esters as cytoplasmic inclusions of approximately 1-micron diameter and thus are models of the foam cells characteristic of atherosclerotic plaque. Simple binary mixtures of cholesteryl palmitate and cholesteryl oleate, the predominant cholesteryl esters in cellular inclusions in both cell types serve as models to explain important aspects of the phase behavior of these inclusions. Although inclusions should exist as stable crystals at 37 degrees C under conditions of thermodynamic equilibrium, microscopic examination of cells indicates that inclusions exist as metastable liquid crystals at 37 degrees C for extended periods of time. Using an analytical model based on nucleation theory, we predict that the cholesteryl ester inclusions should be liquid-crystalline in the cytoplasm of living cells. This may not be true either for lysosomal cholesteryl ester or for extracellular cholesteryl ester present in advanced atherosclerotic plaque where fusion of droplets can enhance the possibility of crystallization. The enhanced metastability of the relatively fluid liquid-crystalline state in cellular inclusions should result in increased activity of the neutral cholesteryl ester hydrolase in living cells.  相似文献   

4.
M T Subbiah 《Steroids》1979,33(3):305-315
This study for the first time has simultaneously assayed three cholesteryl ester hydrolase activities located in the various subcellular fractions (lysosomal, microsomal, and soluble) of the aorta and their significance in aortic cholesteryl ester accumulation during genetic and cholesterol-fed atherosclerosis is assessed. When the enzyme activities in the aorta of age-matched atherosclerosis-susceptible White Carneau and atherosclerosis-resistant Show Racer pigeons were compared, a decrease in microsomal cholesteryl ester hydrolase activity was found during the period of cholesteryl ester accumulation. However, under cholesterol-fed conditions (which further increase cholesteryl ester accumulation), an increase in lysosomal cholesteryl ester hydrolase activity and a decrease in soluble cholesteryl ester hydrolase activity was found. These studies have documented differences in response in specific cholesteryl ester hydrosases of the aorta to genetic and cholesterol-fed atherogenesis and warrant further studies to investigate the effect of hormonal and dietary factors on the activities of these enzymes.  相似文献   

5.
A simple and reliable method was developed to determine the neutral cholesteryl ester hydrolase (CEH) activity in rat testes, using cholesteryl-[1-14C]-oleate as substrate. The activity was due to a soluble enzyme present in the cytoplasm of predominantly Sertoli cells, which could be shown after depleting the testes of Leydig cells with ethane dimethyl sulphonate. This treatment also revealed that the loss of CEH activity in abdominal testes of experimentally cryptorchid rats takes place in the Sertoli cells. In prepubertal rats made unilaterally cryptorchid at birth, the CEH activity was significantly higher in the abdominal than in the scrotal testes at 16 days of age. This is earlier than any previously described biochemical change and coincides with, or may even precede, the earliest morphological changes which are accumulation of lipid droplets in the Sertoli cells. The testicular CEH activity then decreased to 30 days of age in the abdominal testes, whereas the activity increased in the contralateral, scrotal testes. When adult rats were made unilaterally cryptorchid for 24 h, the CEH activity decreased rapidly in the abdominal testes. These results suggest that a derangement in cholesteryl ester metabolism is an early event in the pathogenesis of testicular degeneration in cryptorchidism.  相似文献   

6.
The enzyme cholesterol ester hydrolase (EC 3.1.1.13) was detected in the larvae of the khapra beetle, Trogoderma granarium (Everts). The pH and temperature optima for the enzyme were 6.6 degrees and 37 degrees C respectively. The mol.wt. of the enzyme was 76000-80000. The enzyme was equally effective in hydrolysing cholesteryl acetate, stearate and oleate. Cholesterol derivatives, namely the chloride and the methyl ether, inhibited the enzyme activity almost completely. It was also inhibited completely by p-hydroxymercuribenzoate. This inhibition was reversed by the addition of dithiothreitol, reduced glutathione or cysteine. The enzyme activity was associated predominantly with the 104000 g fraction.  相似文献   

7.
p-Nitrophenyl N-butyl, N-octyl, and N-dodecyl carbamates and a newly synthesized diethyl phosphate compound were studied as potential inhibitors of the cholesteryl ester hydrolases of Fu5AH rat hepatoma cells. Whole homogenates of Fu5AH cells were used as an enzyme source for the assay of cholesteryl ester hydrolase activity. All four compounds led to marked inhibition (70-80%) of neutral cholesteryl ester hydrolase activity (assayed at pH 7) at concentrations where the activity of acid cholesteryl ester hydrolase (assayed at pH 4) was unaffected. Cholesteryl ester hydrolysis was also evaluated in intact cultured cells induced to accumulate cholesteryl esters in cytoplasmic lipid droplets by exposure to cholesterol-rich phospholipid dispersions. Hydrolysis was then assessed during subsequent incubations in the presence of an inhibitor of cholesterol esterification. All compounds caused significant inhibition of cholesterol ester hydrolysis with the diethyl phosphate being the most effective. At a concentration that caused greater than 90% inhibition of the hydrolysis of cytoplasmic cholesteryl esters, the compound had only a minimal effect on lysosomal hydrolysis of cholesteryl esters. These results suggest that diethyl phosphates and N-alkylcarbamates may be of value in future studies on the substrate specificities, regulation, and physiological role(s) of cholesteryl ester hydrolases.  相似文献   

8.
The regulation of the hydrolysis of cholesteryl oleate by female sex hormones was studied in the lysosomal fraction of rat liver. Cholesterol ester hydrolase activity was determined at pH 5.0 with an acetone-dissolved cholesteryl [1-14C]oleate substrate preparation. The administration of a single dose of progesterone decreased the enzyme activity during a 3- to 24-hr period following hormone injection. This effect was not correlated to changes in the lysosomal protein synthesis rate. The lysosomal hydrolysis of cholesteryl esters was also inhibited in a noncompetitive manner by the addition of progesterone at concentrations higher than 100 microM. The esterase failed to respond to the estradiol in vivo as well as in vitro. The findings of the present paper suggest that the lysosomal breakdown of cholesteryl esters in rat liver may be under selective hormonal regulation and that the inhibitory effect of progesterone on the enzyme activity might be, at least in part, responsible for the liver cholesterol ester accumulus produced by the administration of the hormone.  相似文献   

9.
The lysosomal enzyme responsible for cholesteryl ester hydrolysis, acid cholesteryl ester hydrolase, or acid lipase (E.C.3.1.1.13) plays an important role in cellular cholesterol metabolism. Loss of the activity of this enzyme in tissues of individuals with both Wolman disease and cholesteryl ester storage disease is believed to play a causal role in these conditions. The objectives of our studies were not only to directly compare and contrast the clinical features of Wolman disease and cholesteryl ester storage disease but also to determine the reasons(s) for the varied phenotype expression of acid cholesteryl ester hydrolase deficiency. Although both diseases manifest a type II hyperlipoproteinemic phenotype and hepatomegaly secondary to lipid accumulation, a more malignant clinical course with more significant hepatic and adrenal manifestations was observed in the patient with Wolman disease. However, the acid cholesteryl ester hydrolase activity in cultured fibroblasts in both diseases was virtually absent. In addition, fibroblasts from both Wolman disease and cholesteryl ester storage disease were able to utilize exogenously supplied enzyme, suggesting that neither disease was due to defective enzyme delivery by the mannose-6-phosphate receptor pathway. Coculture and cell fusion of fibroblasts from Wolman disease and cholesteryl ester storage disease subjects did not lead to correction of the enzyme deficiency, indicating that these disorders are allelic. However, the activities of the hepatic acid and neutral lipase in these two clinical variants were quite different. Hepatic acid lipase activity was only 4% normal in Wolman disease, but the activity was 23% normal in cholesteryl ester storage disease. The hepatic neutral lipase activity was normal in Wolman disease but increased more than twofold in cholesteryl ester storage disease. These combined results indicate that the clinical heterogeneity in acid cholesteryl ester hydrolase deficiency can be explained by a varied hepatic metabolic response to an allelic mutation.  相似文献   

10.
Hormone-sensitive lipase (HSL) is responsible for the neutral cholesteryl ester hydrolase activity in steroidogenic tissues. Through its action, HSL is involved in regulating intracellular cholesterol metabolism and making unesterified cholesterol available for steroid hormone production. Steroidogenic acute regulatory protein (StAR) facilitates the movement of cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane and is a critical regulatory step in steroidogenesis. In the current studies we demonstrate a direct interaction of HSL with StAR using in vitro glutathione S-transferase pull-down experiments. The 37-kDa StAR is coimmunoprecipitated with HSL from adrenals of animals treated with ACTH. Deletional mutations show that HSL interacts with the N-terminal as well as a central region of StAR. Coexpression of HSL and StAR in Chinese hamster ovary cells results in higher cholesteryl ester hydrolytic activity of HSL. Transient overexpression of HSL in Y1 adrenocortical cells increases mitochondrial cholesterol content under conditions in which StAR is induced. It is proposed that the interaction of HSL with StAR in cytosol increases the hydrolytic activity of HSL and that together HSL and StAR facilitate cholesterol movement from lipid droplets to mitochondria for steroidogenesis.  相似文献   

11.
Sertoli cells and germ cells are separated from the interstitial blood capillaries by an extracellular matrix and the peritubular cells, which constitute a barrier to the movement of plasma lipoproteins. The present study was undertaken to evaluate in vivo and in vitro the high density lipoprotein (HDL) cholesteryl ester transfer from plasma to seminiferous tubule cells in the testis of 30-day-old rats. Firstly, the transfer of HDL cholesteryl oleate from plasma to testicular compartments was evaluated and, secondly, the role of apolipoproteins A-I and E in the uptake of cholesteryl ester by Sertoli cells was investigated. At 2 h after the administration of HDL reconstituted with [3H]cholesteryl ester, dimyristoyl phosphatidylcholine and apolipoproteins, the tissue space in the interstitial cells (740 +/- 60 microliters g-1 cell protein) was fourfold higher than that in the seminiferous tubule cells (170 +/- 10 microliters g-1). Sertoli cells were isolated and incubated with [3H]cholesteryl ester HDL reconstituted with apolipoprotein A-I or E to evaluate the mechanisms of cholesteryl ester influx. At the same apolipoprotein concentration (50 micrograms apolipoprotein ml-1 medium), the uptake of [3H]cholesteryl oleate from phospholipid-apolipoprotein E vesicles was twofold higher than that with phospholipid-apolipoprotein A-I vesicles. The presence of heparin reduced the uptake of cholesteryl ester from apolipoprotein E vesicles but not with apolipoprotein A-I vesicles, indicating that uptake of apolipoprotein A-I vesicles via a secretion of apolipoprotein E by the cells themselves was not involved. These results demonstrate that plasma lipoprotein cholesterol is able to cross the testis lamina propria and that Sertoli cells take up cholesteryl ester for seminiferous tubule cell metabolism mainly via an apolipoprotein E pathway.  相似文献   

12.
Processing of lipoproteins in human monocyte-macrophages   总被引:1,自引:0,他引:1  
Subcellular fractionation of human monocyte-macrophages (HMM) yielded a fraction rich in endosomes, lysosomes, and mitochondria. This pellet was further fractionated in a metrizamide gradient and the subcellular organelles were distributed among seven distinct bands. All of the bands contained lysosomal enzymes in similar amounts. However one band, poor in mitochondria, was markedly enriched in cathepsin D and cholesteryl ester hydrolase activities. A number of different ligands (low density lipoproteins (LDL), malondialdehyde-altered LDL, beta-migrating very low density lipoprotein, high density lipoprotein, reductively methylated LDL, mannose-bovine serum albumin, and transferrin) were presented to HMM at a concentration of 20 micrograms/ml at 4 degrees C. Three minutes after warming the cells at 37 degrees C all ligands except two were found predominantly in the cathepsin D- and cholesteryl ester hydrolase-rich fraction. Unlike the other ligands, LDL had distributed to other more dense fractions and reductively methylated LDL was found mainly in less dense fractions. At a lower concentration, 2 micrograms/ml, the distribution of LDL was identical to the other ligands. In vitro incubation of the fractions obtained from the gradient suggested that cathepsin D was largely responsible for the hydrolysis of the lipoproteins. We conclude that studies of LDL metabolism in HMM must take into account the different processing of this ligand at commonly used concentrations.  相似文献   

13.
Radiolabeled cholesteryl oleate was incorporated into vesicles prepared from egg yolk lecithin and utilized as a substrate for studies of sterol ester hydrolases present in rat liver homogenates. The cholesteryl oleate was shown to be associated with vesicles (unilamellar liposomes) using Sepharose 4B chromatography. With this substrate, two different cholesteryl ester hydrolytic enzymes were demonstrated in subcellular fractions from the liver homogenates. In the lysosome-rich fraction an acid hydrolase was present, while in the cytosol fraction (150,000 g supernatant), hydrolytic activity was shown to occur with an optimum pH between 8 and 8.5. The substrate was characterized by Sepharose chromatography both before and after incubation with the liver fraction and was not dramatically altered even by rigorous incubation conditions. The lysosomal enzyme preparation was capable of hydrolyzing almost all the cholesteryl oleate in the vesicles. Hydrolysis of the phospholipid was proportionately much less than that of the cholesteryl oleate. Comparisons were performed between the vesicle preparation and an alternate substrate preparation involving the direct addition of cholesteryl oleate in acetone solution. The vesicles appeared to be a better substrate for the lysosomal enzyme whereas the activity in the cytosol fraction did not distinguish between the two substrate preparations. Unsonicated suspensions of cholesteryl oleate and lecithin did not serve as suitable substrates for the enzymes. These studies demonstrate the applicability of cholesteryl ester-containing vesicles as a useful substrate for studying cholesteryl ester hydrolysis in vitro.  相似文献   

14.
Cholesteryl ester laden foam cells in atherosclerotic lesions derive, in part, from macrophages. Mobilization of stored cholesteryl esters involves hydrolysis by a neutral cholesteryl ester hydrolase. Incubation of intact P388D1 macrophages with dibutyryl cAMP in the presence of 1-methyl-3-isobutylxanthine resulted in a dose-dependent increase in neutral cholesteryl ester hydrolase activity of up to 50% (ED50 = 0.1 mM). Incubation with prostaglandin E1 in the presence of 1-methyl-3-isobutylxanthine also increased neutral cholesterol ester hydrolase activity by about 50%. In cell-free preparation, cAMP-dependent protein kinase caused about a 2-fold activation of the neutral cholesteryl ester hydrolase. Activation was blocked by protein kinase inhibitor. These data suggest that the P388D1 macrophage may be a useful model for studying the hormonal regulation of cholesteryl ester mobilization in macrophage-derived foam cells.  相似文献   

15.
We have examined the distribution of the cation-independent mannose 6-phosphate receptor and five acid hydrolases in early and late endosomes and a receptor-recycling fraction isolated from livers of estradiol-treated rats. Enrichment of mannose 6-phosphate receptor mass relative to that of crude liver membranes was comparable in membranes of early and late endosomes but was even greater in membranes of the receptor-recycling fraction. Enrichment of acid hydrolase activities (aryl sulfatase, N-acetyl-beta-glucosaminidase, tartrate-sensitive acid phosphatase, and cholesteryl ester acid hydrolase) and cathepsin D mass was also comparable in early and late endosomes but was considerably lower in the receptor-recycling fraction. The enrichment of two acid hydrolases, acid phosphatase and cholesteryl ester acid hydrolase, in endosomes was severalfold greater than that of the other three examined, about 40% of that found in lysosomes. Acid phosphatase and cholesteryl ester acid hydrolase were partially associated with endosome membranes, whereas cathepsin D was found entirely in the endosome contents. These findings raise the possibility that lysosomal enzymes traverse early endosomes during transport to lysosomes in rat hepatocytes and suggest that the greater enrichment of some acid hydrolases in endosomes is related to their association with endosome membranes. Despite the substantial enrichment of lysosomal enzymes in hepatocytic endosomes, we found that two, cholesteryl ester acid hydrolase and cathepsin D, did not degrade cholesteryl esters and apolipoprotein B-100 of endocytosed low density lipoproteins in vivo, presumably because they are inactive at the pH within endosomes.  相似文献   

16.
The objective of this study was to examine and characterize the cholesteryl ester synthesizing [S] and hydrolyzing [H] properties of the acid cholesteryl ester hydrolase (acid cholesteryl ester hydrolase), both in isolated rat liver lysosomes and in cell-free extracts from cultured fibroblasts. For both liver lysosomes and fibroblasts extracts, the major synthesizing activity was found around pH 4 and did not require exogenous ATP. The rate of hydrolysis was measured at pH 4.5. Several different inhibitors were used in order to characterize the reactions. Ammonium chloride did not markedly affect the activity of acid cholesteryl ester hydrolase at pH 4 [S] or 4.5 [H], whereas chloroquine was a potent inhibitor of acid CEase in both liver lysosomes and fibroblast extracts. The [S] activity of the acid cholesteryl ester hydrolase in either material was not affected by the acylCoA:cholesterol acyltransferase inhibitor Compound 58-035 from Sandoz. Progesterone, on the other hand, which is an often used acylCoA:cholesterol acyltransferase inhibitor, markedly blocked both activities of the acid CEase. Our results indicate that the lysosomal compartment of both studied tissues, in addition to hydrolysis activity, also have a significant esterification activity. It appears that both activities are carried out by the same enzyme.  相似文献   

17.
Cholesterol exists within the hepatocyte as free cholesterol and cholesteryl ester. The proportion of intrahepatic cholesterol in the free or ester forms is governed in part by the rate of cholesteryl ester formation by acyl-coenzyme A:cholesterol acyltransferase (ACAT) and cholesteryl ester hydrolysis by neutral cholesterol ester (CE) hydrolase. In other cell types both ACAT and CE hydrolase activities are regulated in response to changes in the need for cellular free cholesterol. In rats, we performed a variety of experimental manipulations in order to vary the need for hepatic free cholesterol and to examine what effect, if any, this had on the enzymes that govern cholesteryl ester metabolism. Administration of a 20-mg bolus of lipoprotein cholesterol or a diet supplemented with 2% cholesterol resulted in an increase in microsomal cholesteryl ester content with little change in microsomal free cholesterol. This was accomplished by an increase in cholesteryl esterification as measured by ACAT but no change in CE hydrolase activity. An increased need for hepatic free cholesterol was experimentally induced by intravenous bile salt infusion or cholestyramine (3%) added to the diet. ACAT activity was decreased with both experimental manipulations compared to controls, while CE hydrolase activity did not change. Microsomal cholesteryl ester content decreased significantly with little change in microsomal free cholesterol content. Addition of exogenous liposomal cholesterol to liver microsomes from cholestyramine-fed and control rats resulted in a 784 +/- 38% increase in ACAT activity. Nevertheless, the decrease in ACAT activity with cholestyramine feeding was maintained. These studies allowed us to conclude that changes in hepatic free cholesterol needs are met in part by regulation of the rate of cholesterol esterification by ACAT without a change in the rate of cholesteryl ester hydrolysis by CE hydrolase.  相似文献   

18.
The properties and subcellular distribution of the enzymes involved with the synthesis and hydrolysis of cholesteryl esters were investigated in skin of normal and essential fatty acid-deficient rats. Most of the activity of the cholesterol-esterifying enzyme(s) is associated with the 12000g and 105000g particulate fractions. The dependence of the enzyme reaction on ATP and CoA suggests that the esterification of cholesterol by rat skin is mediated by a fatty acyl-CoA-cholesterol acyltransferase (EC 2.3.1.-). On the other hand, most of the activity of the cholesteryl ester hydrolase (EC 3.1.1.13) is localized in the 105000g supernatant fraction. Although the activity of the cholesterol-esterifying enzyme(s) was elevated in skin preparations from essential fatty acid-deficient rats, the activity of the hydrolase was significantly decreased. These observations may explain in part the elevated concentrations of sterol esters in the skin of these animals. Prostaglandin E(2) at low concentrations exerted marked inhibitory effect on the activity of the cholesterol-esterifying enzyme(s), whereas no effect was observed on the activity of the hydrolase at similar concentrations. However, at high concentrations prostaglandin E(2) exerted moderate stimulatory effect on the activity of the hydrolase. These results suggest a possible physiological role of this substance in regulating the production of sterol esters in this tissue.  相似文献   

19.
The characteristics of neutral cholesteryl ester hydrolase activities found in the microsomal and cytosolic subcellular fractions of rat lactating mammary tissue were investigated. The enzymes were assayed using cholesteryl oleate dispersed as a mixed micelle with phosphatidylcholine and sodium taurocholate (molar ratio 1:4:2) as substrate. This method gave activities approx. 20-fold higher than those seen when cholesteryl oleate was added in ethanol. Addition of phosphatidylcholine and sodium taurocholate to the assays using the ethanol-dissolved substrate did not increase the activities observed. When the cholesteryl oleate was dispersed with phosphatidylcholine only (molar ratio, 1:4) the activity of the two neutral cholesteryl ester hydrolases was also decreased considerably compared to that found with mixed micelles. In this case, however, approx. 60% of the cytosolic, but only 10% of the microsomal activity, was restored by separate addition of sodium taurocholate. The activities of both the microsomal and the cytosolic neutral cholesteryl ester hydrolases were inhibited by MgCl2, and this inhibition was almost completely reversed by the addition of an equimolar concentration of ATP. At a fixed concentration of MgCl2 increasing concentrations of ATP increased the enzyme activities in a dose-dependent way. The activity of the microsomal, but not the cytosolic enzyme was enhanced by a cyclic AMP-dependent protein kinase and both activities were inhibited by alkaline phosphatase (bovine milk). These results provide evidence for the regulation of neutral cholesteryl ester hydrolases in the rat lactating mammary gland by mechanisms involving phosphorylation-dephosphorylation and therefore suggest that these enzymes may be under hormonal control.  相似文献   

20.
The relationship of cholesteryl ester hydrolysis to the physical state of the cholesteryl ester in J774 murine macrophages was explored in cells induced to store cholesteryl esters either in anisotropic (ordered) inclusions or isotropic (liquid) inclusions. In contrast to other cell systems, the rate of cholesteryl ester hydrolysis was faster in cells containing anisotropic inclusions than in cells containing isotropic inclusions. Two contributing factors were identified. Kinetic analyses of the rates of hydrolysis are consistent with a substrate competition by co-deposited triglyceride in cells with isotropic inclusions. In addition, hydrolysis of cholesteryl esters in cells with anisotropic droplets is mediated by both cytoplasmic and lysosomal lipolytic enzymes, as shown by using the lysosomotropic agent, chloroquine, and an inhibitor of neutral cholesteryl ester hydrolase, umbelliferyl diethylphosphate. In cells containing anisotropic inclusions, hydrolysis was partially inhibited by incubation in media containing either chloroquine or umbelliferyl diethylphosphate. Together, chloroquine and umbelliferyl diethylphosphate completely inhibited hydrolysis. However, when cells containing isotropic inclusions were incubated with umbelliferyl diethylphosphate, cholesteryl ester hydrolysis was completely inhibited, but chloroquine had no effect. Transmission electron microscopy demonstrated a primarily lysosomal location for lipid droplets in cells with anisotropic droplets and both non-lysosomal and lysosomal populations of lipid droplets in cells with isotropic droplets.These results support the conclusion that there is a lysosomal component to the hydrolysis of stored cholesteryl esters in foam cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号