首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use a simulation technique based on molecular dynamics and stochastic rotation model to present the effect of temperature and capsid tail on the packaging and ejection processes of semiflexible polymers. We consider two types of solvents, a good solvent, where the polymer is neutral and repulsion interactions among its various sections are favored, and one where the polymer is charged, giving rise to extra electrostatic reaction. For tailless capsids, we find that packing a neutral polymer is slightly slower at higher temperatures whereas its ejection is slightly slower at lower temperatures. We find the same trend for a charged polymer but the effect is noticeably larger. At a high enough temperature, we notice that packing a charged polymer can be stopped. On the other hand, at fixed temperature and regardless whether the polymer is charged, packing is much easier for a capsid with a tail whereas ejection is much slower. The effect of including the tail on the dynamics of a charged polymer, in particular, is rather significant: more packing fraction is facilitated at higher temperatures due to more ordered polymer configuration inside the capsid. In contrast, during ejection the tail traps the last remaining beads for quite some time before allowing full ejection. We interpret these results in terms of entropic and electrostatic forces.  相似文献   

2.
In the single-particle tracking experiment, the internal motion of a single DNA or polymer molecule whose one end is attached to a microsphere (optical marker) and the other end is anchored to a substratum is studied (Finzi and Gelles, 1995). The stochastic Brownian dynamics of the sphere reflect the spontaneous fluctuations, thus the physical characteristics, of the DNA or polymer molecule (Qian and Elson, 1999, Qian, 2000). In this paper, two continuous models of polymer molecules, a flexible elastic string and a weakly bentable elastic rod, are analyzed. Both models are cast mathematically in terms of linear stochastic differential equations. Based on Fourier analyses, we calculate the mean square displacement (MSD) of the particle motion, the key observable in the experiment. We obtain for both models the short-time asymptotics for the MSD, as well as the long-time behavior in terms of the smallest non-zero eigenvalues. It is shown that: (i) the long-time dynamics of continuous elastic string model quantitatively agree with that of the discrete bead-spring model. (ii) The short-time MSD of both models are controlled by the tethered particle, with linear dependence on t. (iii) The two models show characteristic difference for long-time behavior: The longest relaxation time is proportional to L 2 for long elastic string and to L for short elastic string, but is proportional to L 4 for both long and short weakly bentable rod. Received: 26 March 1998 / Revised version: 9 June 2000 / Published online: 14 September 2000  相似文献   

3.
We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces.  相似文献   

4.

Miniaturized bubble columns (MBCs) have different hydrodynamics in comparison with the larger ones, but there is a lack of scientific data on MBCs. Hence, in this study, the effect of gas hold-up, flow regimes, bubble size distribution on volumetric oxygen mass transfer coefficient at different pore size spargers and gas flow rates in MBCs in the presence and absence of microorganisms were investigated. It was found that flow regime transition occurred around low gas flow rates of 1.18 and 0.85 cm/s for small (16–40 µm) and large (40–100 µm) pore size spargers, respectively. Gas hold-up and KLa in MBC with small size sparger were higher than those with larger one, with an increasing effect in the presence of microorganisms. A comparison revealed that the wall effect on the flow regime and gas hold-up in MBCs was greater than bench-scale bubble columns. The KLa values significantly increased up to tenfold using small pore size sparger. In the MBC and stirred tank bioreactors, the maximum obtained cell concentrations were OD600 of 41.5 and 43.0, respectively. Furthermore, it was shown that in MBCs, higher KLa and lower turbulency could be achieved at the end of bubbly flow regime.

  相似文献   

5.
6.
Explaining species geographic distributions by macroclimate variables is the most common approach for getting mechanistic insights into large‐scale diversity patterns and range shifts. However, species' traits influencing biophysical processes can produce a large decoupling from ambient air temperature, which can seriously undermine biogeographical inference. We combined stable oxygen isotope theory with a trait‐based approach to assess leaf temperature during carbon assimilation (TL) and its departure (ΔT) from daytime free air temperature during the growing season (Tgs) for 158 plant species occurring from 3,400 to 6,150 m a.s.l. in Western Himalayas. We uncovered a general extent of temperature decoupling in the region. The interspecific variation in ΔT was best explained by the combination of plant height and δ13 C, and leaf dry matter content partly captured the variation in TL. The combination of TL and ΔT, with ΔT contributing most, explained the interspecific difference in elevational distributions. Stable oxygen isotope theory appears promising for investigating how plants perceive temperatures, a pivotal information to species biogeographic distributions.  相似文献   

7.
The one‐degree‐of‐freedom Cochran‐Armitage (CA) test statistic for linear trend has been widely applied in various dose‐response studies (e.g., anti‐ulcer medications and short‐term antibiotics, animal carcinogenicity bioassays and occupational toxicant studies). This approximate statistic relies, however, on asymptotic theory that is reliable only when the sample sizes are reasonably large and well balanced across dose levels. For small, sparse, or skewed data, the asymptotic theory is suspect and exact conditional method (based on the CA statistic) seems to provide a dependable alternative. Unfortunately, the exact conditional method is only practical for the linear logistic model from which the sufficient statistics for the regression coefficients can be obtained explicitly. In this article, a simple and efficient recursive polynomial multiplication algorithm for exact unconditional test (based on the CA statistic) for detecting a linear trend in proportions is derived. The method is applicable for all choices of the model with monotone trend including logistic, probit, arcsine, extreme value and one hit. We also show that this algorithm can be easily extended to exact unconditional power calculation for studies with up to a moderately large sample size. A real example is given to illustrate the applicability of the proposed method.  相似文献   

8.
A strict analytical theory has been developed describing the behavior of a model lattice polymer chain of arbitrary stiffness in a slitlike pore at polymer–adsorbent interaction energies –ε. The thermodynamic characteristics of the system were calculated. It was shown that the transition of the macromolecule from the solution volume inside a pore occurs by the first-order phase transition with evolution of latent heat of adsorption. The transition point –ε = –εc is determined by the chain stiffness and is independent of the pore width D. It is shown that in the precritical range, –ε < –εc, the free energy ΔF of the macromolecules in the pores is adequately described by the universal dependence ΔF = ΔF(D*/A), where D* is some effective pore width depending on the value of –ε, and A is the length of the Kuhn segment. At high attraction energies, –ε ? –εc, the macromolecules are bonded to the pore walls by a great number of units and their free energy depends only on –ε and the chain stiffness, ΔF = ΔF(A, ε). Close to the critical energy –ε ? –εc (transition range), ΔF is determined by both the stiffness of the macromolecule and the pore width D: ΔFA2D?1 for fairly high values of A and D. The possibilities of using porous media as protein stabilizers are discussed, and the value of the stabilizing effect depending on the chain stiffness is estimated.  相似文献   

9.
Capsids of many viruses assemble around nucleic acids or other polymers. Understanding how the properties of the packaged polymer affect the assembly process could promote biomedical efforts to prevent viral assembly or nanomaterials applications that exploit assembly. To this end, we simulate on a lattice the dynamical assembly of closed, hollow shells composed of several hundred to 1000 subunits, around a flexible polymer. We find that assembly is most efficient at an optimum polymer length that scales with the surface area of the capsid; polymers that are significantly longer than optimal often lead to partial-capsids with unpackaged polymer “tails” or a competition between multiple partial-capsids attached to a single polymer. These predictions can be tested with bulk experiments in which capsid proteins assemble around homopolymeric RNA or synthetic polyelectrolytes. We also find that the polymer can increase the net rate of subunit accretion to a growing capsid both by stabilizing the addition of new subunits and by enhancing the incoming flux of subunits; the effects of these processes may be distinguishable with experiments that monitor the assembly of individual capsids.  相似文献   

10.
Tailed bacteriophage particles carry DNA highly pressurized inside the capsid. Challenge with their receptor promotes release of viral DNA. We show that addition of the osmolyte polyethylene glycol (PEG) has two distinct effects in bacteriophage SPP1 DNA ejection. One effect is to inhibit the trigger for DNA ejection. The other effect is to exert an osmotic pressure that controls the extent of DNA released in phages that initiate ejection. We carried out independent measurements of each effect, which is an essential requirement for their quantitative study. The fraction of phages that do not eject increased linearly with the external osmotic pressure. In the remaining phage particles ejection stopped after a defined amount of DNA was reached inside the capsid. Direct measurement of the size of non-ejected DNA by gel electrophoresis at different PEG concentrations in the latter sub-population allowed determination of the external osmotic pressure that balances the force powering DNA exit (47 atm for SPP1 wild-type). DNA exit stops when the ejection force mainly due to repulsion between DNA strands inside the SPP1 capsid equalizes the force resisting DNA insertion into the PEG solution. Considering the turgor pressure in the Bacillus subtilis cytoplasm the energy stored in the tight phage DNA packing is only sufficient to power entry of the first 17% of the SPP1 chromosome into the cell, the remaining 83% requiring application of additional force for internalization.  相似文献   

11.
The Péclet correction is often used to predict leaf evaporative enrichment and requires an estimate of effective path length (L). Studies to estimate L in conifer needles have produced unexpected patterns based on Péclet theory and leaf anatomy. We exposed seedlings of six conifer species to different vapour pressure deficits (VPD) in controlled climate chambers to produce steady‐state leaf water enrichment (in 18O). We measured leaf gas exchange, stable oxygen isotopic composition (δ18O) of input and plant waters as well as leaf anatomical characteristics. Variation in bulk needle water δ18O was strongly related to VPD. Conifer needles had large amounts of water within the vascular strand that was potentially unenriched (up to 40%). Both standard Craig–Gordon and Péclet models failed to accurately predict conifer leaf water δ18O without taking into consideration the unenriched water in the vascular strand and variable L. Although L was linearly related to mesophyll thickness, large within‐species variation prevented the development of generalizations that could allow a broader use of the Péclet effect in predictive models. Our results point to the importance of within needle water pools and isolating mechanisms that need further investigation in order to integrate Péclet corrections with ‘two compartment’ leaf water concepts.  相似文献   

12.
We studied the control parameters that govern the dynamics of in vitro DNA ejection in bacteriophage λ. Previous work demonstrated that bacteriophage DNA is highly pressurized, and this pressure has been hypothesized to help drive DNA ejection. Ions influence this process by screening charges on DNA; however, a systematic variation of salt concentrations to explore these effects has not been undertaken. To study the nature of the forces driving DNA ejection, we performed in vitro measurements of DNA ejection in bulk and at the single-phage level. We present measurements on the dynamics of ejection and on the self-repulsion force driving ejection. We examine the role of ion concentration and identity in both measurements, and show that the charge of counterions is an important control parameter. These measurements show that the mobility of ejecting DNA is independent of ionic concentrations for a given amount of DNA in the capsid. We also present evidence that phage DNA forms loops during ejection, and confirm that this effect occurs using optical tweezers.  相似文献   

13.
All tailed bacteriophages follow the same general scheme of infection: they bind to their specific host receptor and then transfer their genome into the bacterium. DNA translocation is thought to be initiated by the strong pressure due to DNA packing inside the capsid. However, the exact mechanism by which each phage controls its DNA ejection remains unknown. Using light scattering, we analyzed the kinetics of in vitro DNA release from phages SPP1 and λ (Siphoviridae family) and found a simple exponential decay. The ejection characteristic time was studied as a function of the temperature and found to follow an Arrhenius law, allowing us to determine the activation energy that governs DNA ejection. A value of 25-30 kcal/mol is obtained for SPP1 and λ, comparable to the one measured in vitro for T5 (Siphoviridae) and in vivo for T7 (Podoviridae). This suggests similar mechanisms of DNA ejection control. In all tailed phages, the opening of the connector-tail channel is needed for DNA release and could constitute the limiting step. The common value of the activation energy likely reflects the existence for all phages of an optimum value, ensuring a compromise between efficient DNA delivery and high stability of the virus.  相似文献   

14.
Guang Song 《Proteins》2018,86(2):152-163
In this work, we carry out a comparative study of the homo 360‐mer structures of viral capsids and bacterial compartments. Different from viral 360‐mers that all are arranged on a skewed right‐handed icosahedral lattice with a triangulation number T of 7, the new 360‐mer structure of AaLS‐13, an engineered bacterial compartment, offers a novel open conformation that has a unique unskewed lattice arrangement with a triangulation number T of 1 and large keyhole‐shaped pores in the shell. By comparing their differences, we are able to predict a closed conformation of AaLS‐13 that has the same lattice arrangement as existing viral capsid structures and in which all the keyhole‐shaped pores are shut. We find that there is a smooth transition pathway between the open and closed conformations. There exists another close conformation but with an opposite, left handedness, which, however, is not kinetically accessible from the open conformation. Our finding thus provides a clue why existing 360‐mer capsid structures all share the same right handedness. We further show that the conformation transition between the open and closed forms aligns extremely well with the intrinsic dynamics of the system as revealed from normal mode analysis, indicating that conformation transition can be fully driven by thermal fluctuations. The significance of this work is that it provides a better understanding of shell dynamics of both viral capsids and bacterial compartments, paving a way for future study of pore dynamics and the selective permeability of these systems.  相似文献   

15.
The transfer of the bacteriophage genome from the capsid into the host cell is a key step of the infectious process. In bacteriophage T5, DNA ejection can be triggered in vitro by simple binding of the phage to its purified Escherichia coli receptor FhuA. Using electrophoresis and cryo-electron microscopy, we measure the extent of DNA ejection as a function of the external osmotic pressure. In the high pressure range (7-16 atm), the amount of DNA ejected decreases with increasing pressure, as theoretically predicted and observed for λ and SPP1 bacteriophages. In the low and moderate pressure range (2-7 atm), T5 exhibits an unexpected behavior. Instead of a unique ejected length, multiple populations coexist. Some phages eject their complete genome, whereas others stop at some nonrandom states that do not depend on the applied pressure. We show that contrarily to what is observed for the phages SPP1 and λ, T5 ejection cannot be explained as resulting from a simple pressure equilibrium between the inside and outside of the capsid. Kinetics parameters and/or structural characteristics of the ejection machinery could play a determinant role in T5 DNA ejection.  相似文献   

16.
Summary The in situ growth of microorganisms in Berea sandstone cores preferentially plugged the larger pore entrances. The largest pore entrance sizes after microbial plugging ranged from 20 to 38 m, compared with 59 to 69 m before plugging. The pore entrance size distribution of plugged cores was shifted to smaller sizes. A mathematical model based on Poiseuille's equation was found to adequately predict permeability reductions (greater than 90%) caused by microbial growth in the large pore entries.Nomenclature Q volumetric flow rate (L 3/t) - C orifice constant (dimensionless) - A cross-sectional area (L 2) - g gravity (L/t 2) - h pieziometric head (L) - s transmittivity (L 2) - R e Reynolds number (dimensionless) - a constant (dimensionless) - density (M/L 3) - viscosity (M/Lt) - d diameter (L) - L length (L) - P pressure change (M/L 2)  相似文献   

17.
The conjunction of insights from structural biology, solution biochemistry, genetics, and single-molecule biophysics has provided a renewed impetus for the construction of quantitative models of biological processes. One area that has been a beneficiary of these experimental techniques is the study of viruses. In this article we describe how the insights obtained from such experiments can be utilized to construct physical models of processes in the viral life cycle. We focus on dsDNA bacteriophages and show that the bending elasticity of DNA and its electrostatics in solution can be combined to determine the forces experienced during packaging and ejection of the viral genome. Furthermore, we quantitatively analyze the effect of fluid viscosity and capsid expansion on the forces experienced during packaging. Finally, we present a model for DNA ejection from bacteriophages based on the hypothesis that the energy stored in the tightly packed genome within the capsid leads to its forceful ejection. The predictions of our model can be tested through experiments in vitro where DNA ejection is inhibited by the application of external osmotic pressure.  相似文献   

18.
19.
Structure-activity relationships of 56 pentamethylenbis-ammonium compounds, the blockers of the neuronal nicotinic acetylcholine receptor (nAChR) ion channel, have been studied to estimate the cross-sectional dimensions of the channel pore. The cat superior cervical sympathetic ganglion in situ and isolated guinea pig ileum were used to evaluate the potency of the compounds to block ganglionic transmission. Minimum-energy conformations of each compound were calculated by the molecular mechanics method. A topographic model of the binding site of the blockers was proposed. It incorporates two narrowings, a large and a small one. The small narrowing is located between the large one and the cytoplasmic end of the pore. The cross-sectional dimensions of the large and small narrowings estimated from the dimensions of the blockers are 6.1 × 8.3 ? and 5.5 × 6.4 ?, respectively, the distance between the narrowings along the pore being approximately 7 ?. Most potent blockers would occlude the pore via binding to the channel at the levels of both narrowings. Less potent blockers are either too large or too small to bind to both narrowings simultaneously: large blockers would occlude the pore at the level of large narrowing, while small blockers would pass the large narrowing and occlude the pore at the level of small narrowing only. A comparison of the topographic model with a molecular five-helix bundle model of nAChR pore predicts Serine and Threonine rings to be the most probable candidates for the large and small narrowings, respectively. Received: 6 September 1995/Revised: 12 March 1996  相似文献   

20.
An outline is given of an analysis that leads to an exact solution for the problem of steady-state diffusion through a finite thick pore into an infinite region surrounding the mouth of the pore. From this exact formula a simple expression for the flux is derived. This expression approximates the flux with a relative error of less than 3.42 per cent independently of the ratiol/a wherel is the length of the pore anda its radius. If desired, more accurate expressions for the flux can be obtained from the exact solution. This research was supported in part by Contract Nonr 595(17), Office of Naval Research, U.S. Navy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号