共查询到20条相似文献,搜索用时 0 毫秒
1.
《Bioscience, biotechnology, and biochemistry》2013,77(6):1110-1115
PriB is a primosomal protein required for re-initiation of replication in bacteria. We characterized and compared the DNA-binding properties of PriB from Salmonella enterica serovar Typhimurium LT2 (StPriB) and Escherichia coli (EcPriB). Only one residue of EcPriB, V6, was different in StPriB (replaced by A6). Previous structural information revealed that this residue is located on the putative dimer-dimer interface of PriB and is not involved in single-stranded DNA (ssDNA) binding. The cooperative binding mechanism of StPriB to DNA is, however, very different from that of EcPriB. Unlike EcPriB, which forms a single complex with ssDNAs of various lengths, StPriB forms two or more distinct complexes. Based on these results, as well as information on structure, binding modes for forming a stable complex of PriB with ssDNA of 25 nucleotides (nt), (EcPriB)25, and (StPriB)25 are proposed. 相似文献
2.
3.
Saki Fujiyama Yoshito Abe Taichi Takenawa Takahiko Aramaki Seijiro Shioi Tsutomu Katayama Tadashi Ueda 《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(2):299-307
PriB is a basic 10-kDa protein that acts as a facilitator in PriA-dependent replication restart in Escherichia coli. PriB has an OB-fold dimer structure and exhibits single-stranded DNA (ssDNA)-binding activities similar to single-stranded binding protein (SSB). In this study, we examined PriB's interaction with ssDNA (oligo-dT35, -dT15, and -dT7) using heteronuclear NMR analysis. Interestingly, 1H or 15N chemical shift changes of the PriB main-chain showed two distinct modes using oligo-dT35. The chemical shift perturbation sites in the primary mode were consistent with the main contact site in PriB–ssDNA, which was previously determined by crystal structure analysis. The results also suggested that approximately 8 nt in ssDNA was the main contact site to PriB. In the secondary mode, residues in the α-helix region (His57–Ser65) and in β4–loop3–β5 were mainly perturbed. On the other hand, we examined the state of ssDNA by FRET using 5′-Cy3- and 3′-Cy5-modified oligo-dT35. As the PriB concentration increased, two-step saturation curves were observed in the FRET assay, suggesting a compact structure of ssDNA. Moreover, we confirmed two-step PriB binding to oligo-dT35 using EMSA. The pH dependence of FRET suggested contribution of the His residues. Therefore, we prepared His mutants of PriB and found that His64 in the α-helix region contributed to the second interaction between PriB and ssDNA using FRET and EMSA. Thus, from a structural standpoint, we suggested the role of His64 on the compactness of the PriB–ssDNA complex and on the positive cooperativity of PriB. 相似文献
4.
The stability and deletion-size-distribution profiles of leading strand (CAG)75 and (CTG)137 trinucleotide repeat arrays inserted in the Escherichia coli chromosome were investigated upon overexpression of the single-stranded DNA-binding protein (SSB) and in mutant strains deficient for the SbcCD (Rad51/Mre11) nuclease. SSB overexpression increases the stability of the (CAG)75 repeat array and leads to a loss of the bias towards large deletions for the same array. Furthermore, the absence of SbcCD leads to a reduction in the number of large deletions in strains containing the (CTG)137 repeat array. 相似文献
5.
Single-stranded DNA (ssDNA)-binding protein (SSB) plays an important role in DNA replication, recombination, and repair. SSB consists of an N-terminal ssDNA-binding domain with an oligonucleotide/oligosaccharide binding fold and a flexible C-terminal tail involved in protein-protein interactions. SSB from Helicobacter pylori (HpSSB) was isolated, and the ssDNA-binding characteristics of HpSSB were analyzed by fluorescence titration and electrophoretic mobility shift assay. Tryptophan fluorescence quenching was measured as 61%, and the calculated cooperative affinity was 5.4 × 107 M− 1 with an ssDNA-binding length of 25-30 nt. The crystal structure of the C-terminally truncated protein (HpSSBc) in complex with 35-mer ssDNA [HpSSBc-(dT)35] was determined at a resolution of 2.3 Å. The HpSSBc monomer folds as an oligonucleotide/oligosaccharide binding fold with a Y-shaped conformation. The ssDNA wrapped around the HpSSBc tetramer through a continuous binding path comprising five essential aromatic residues and a positively charged surface formed by numerous basic residues. 相似文献
6.
7.
Saikrishnan K Jeyakanthan J Venkatesh J Acharya N Sekar K Varshney U Vijayan M 《Journal of molecular biology》2003,331(2):385-393
Single-stranded DNA-binding protein (SSB) is an essential protein necessary for the functioning of the DNA replication, repair and recombination machineries. Here we report the structure of the DNA-binding domain of Mycobacterium tuberculosis SSB (MtuSSB) in four different crystals distributed in two forms. The structure of one of the forms was solved by a combination of isomorphous replacement and anomalous scattering. This structure was used to determine the structure of the other form by molecular replacement. The polypeptide chain in the structure exhibits the oligonucleotide binding fold. The globular core of the molecule in different subunits in the two forms and those in Escherichia coli SSB (EcoSSB) and human mitochondrial SSB (HMtSSB) have similar structure, although the three loops exhibit considerable structural variation. However, the tetrameric MtuSSB has an as yet unobserved quaternary association. This quaternary structure with a unique dimeric interface lends the oligomeric protein greater stability, which may be of significance to the functioning of the protein under conditions of stress. Also, as a result of the variation in the quaternary structure the path adopted by the DNA to wrap around MtuSSB is expected to be different from that of EcoSSB. 相似文献
8.
Identification of the SSB Binding Site on E. coli RecQ Reveals a Conserved Surface for Binding SSB's C Terminus 总被引:1,自引:0,他引:1
RecQ DNA helicases act in conjunction with heterologous partner proteins to catalyze DNA metabolic activities, including recombination initiation and stalled replication fork processing. For the prototypical Escherichia coli RecQ protein, direct interaction with single-stranded DNA-binding protein (SSB) stimulates its DNA unwinding activity. Complex formation between RecQ and SSB is mediated by the RecQ winged-helix domain, which binds the nine C-terminal-most residues of SSB, a highly conserved sequence known as the SSB-Ct element. Using nuclear magnetic resonance and mutational analyses, we identify the SSB-Ct binding pocket on E. coli RecQ. The binding site shares a striking electrostatic similarity with the previously identified SSB-Ct binding site on E. coli exonuclease I, although the SSB binding domains in the two proteins are not otherwise related structurally. Substitutions that alter RecQ residues implicated in SSB-Ct binding impair RecQ binding to SSB and SSB/DNA nucleoprotein complexes. These substitutions also diminish SSB-stimulated DNA helicase activity in the variants, although additional biochemical changes in the RecQ variants indicate a role for the winged-helix domain in helicase activity beyond SSB protein binding. Sequence changes in the SSB-Ct element are sufficient to abolish interaction with RecQ in the absence of DNA and to diminish RecQ binding and helicase activity on SSB/DNA substrates. These results support a model in which RecQ has evolved an SSB-Ct binding site on its winged-helix domain as an adaptation that aids its cellular functions on SSB/DNA nucleoprotein substrates. 相似文献
9.
Erika Scaltriti Eugenia Polverini Stefano Grolli Elisa Eufemi Sylvain Moineau Christian Cambillau Roberto Ramoni 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(6):1070-1076
Virulent lactococcal phages of the Siphoviridae family are responsible for the industrial milk fermentation failures worldwide. Lactococcus lactis, a Gram-positive bacterium widely used for the manufacture of fermented dairy products, is subjected to infections by virulent phages, predominantly those of the 936 group, including phage p2. Among the proteins coded by lactococcal phage genomes, of special interest are those expressed early, which are crucial to efficiently carry out the phage lytic cycle. We previously identified and solved the 3D structure of lactococcal phage p2 ORF34, a single stranded DNA binding protein (SSBp2). Here we investigated the molecular basis of ORF34 binding mechanism to DNA. DNA docking on SSBp2 and Molecular Dynamics simulations of the resulting complex identified R15 as a crucial residue for ssDNA binding. Electrophoretic Mobility Shift Assays (EMSA) and Atomic Force Microscopy (AFM) imaging revealed the inability of the Arg15Ala mutant to bind ssDNA, as compared to the native protein. Since R15 is highly conserved among lactococcal SSBs, we propose that its role in the SSBp2/DNA complex stabilization might be extended to all the members of this protein family. 相似文献
10.
Hyaluronidase (HAase) activity was detected in the culture supernatants of Penicillium purpurogenum and Penicillium funiculosum. The HAase from Penicillium spp. (HAase-P) was a hyaluronate 4-glycanohydrolase, which catalyzed the endolytic hydrolysis of the β-1,4 glycosidic linkage, as do vertebrate HAases. The gene encoding HAase-P was cloned and expressed in Escherichia coli. According to homology analyses of the deduced amino acid sequences, HAase-P is not classified into any of the known HAase groups, but belongs to glycoside hydrolase family 16, which includes endo-β-1,3(4)-glucanase. Regarding the substrate specificities, no chondroitinase and glucanase activities were detected. Judging from homology analyses and enzymatic properties, HAase-P seems to be a new type of HAase. 相似文献
11.
Protein disulfide isomerase (PDI) enzymes are eukaryotic oxidoreductases that catalyze oxidation, reduction and isomerization of disulfide bonds in polypeptide substrates. Here, we report the biochemical characterization of a PDI enzyme from the protozoan parasite Entamoeba histolytica (EhPDI). Our results show that EhPDI behaves mainly as an oxidase/isomerase and can be inhibited by bacitracin, a known PDI inhibitor; moreover, it exhibits chaperone-like activity. Albeit its physiological role in the life style of the parasite (including virulence and survival) remains to be studied, EhPDI could represent a potential drug target for anti-amebic therapy. 相似文献
12.
TTYH2, a human homologue of the Drosophila melanogaster gene tweety, is located on 17q24 and upregulated in renal cell carcinoma 总被引:1,自引:0,他引:1
Using differential display PCR, we identified a novel gene upregulated in renal cell carcinoma. Characterization of the full-length cDNA and gene revealed that the encoded protein is a human homologue of the Drosophila melanogaster Tweety protein, and so we have termed the novel protein TTYH2. The orthologous mouse cDNA was also identified and the predicted mouse protein is 81% identical to the human protein. The encoded human TTYH2 protein is 534 amino acids and, like the other members of the tweety-related protein family, is a putative cell surface protein with five transmembrane regions. TTYH2 is located at 17q24; it is expressed most highly in brain and testis and at lower levels in heart, ovary, spleen, and peripheral blood leukocytes. Expression of this gene is upregulated in 13 of 16 (81%) renal cell carcinoma samples examined. In addition to a putative role in brain and testis, the over-expression of TTYH2 in renal cell carcinoma suggests that it may have an important role in kidney tumorigenesis. 相似文献
13.
14.
Tsuda K Nishiya N Umeyama T Uehara Y 《Biochemical and biophysical research communications》2011,(3):418-423
Candida albicans is the most common and virulent fungus causing candidiasis in various parts of the body and can be lethal to immunocompromised patients. All currently known antifungal therapies are drugs which cause serious side effects in the host. An inhibitor specific for fungus survival is an ideal therapeutic. C. albicans MPS1 (monopolar spindle 1) has been reported as a kinase essential to its survival. Because CaMps1p shares limited sequence homology with the human ortholog (hMps1p), we screened for a chemical inhibitor in anticipation of finding one with Candida specific cytotoxicity. In vitro screening using a recombinant catalytic domain of CaMps1p identified LY83583 (6-anilino-5,8-quinolinedione), known as a guanylate cyclase inhibitor, to be blocking CaMps1p kinase activity. In addition to its in vitro kinase inhibition, LY83583 reduced the growth rate of C. albicans. Finally, we compared the inhibitory activity on CaMps1p and hMps1p among inhibitors against those kinases. LY83583 showed specific inhibition for CaMps1p with no effect on hMps1p activity. Conversely, the CaMps1p activity was not affected by known hMps1p inhibitors. These findings suggest that CaMps1p may well be an ideal target molecule for antifungal therapy. 相似文献
15.
Ponnusamy R Moll R Weimar T Mesters JR Hilgenfeld R 《Journal of molecular biology》2008,383(5):1081-1096
Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection. 相似文献
16.
Lundberg E Bäckström S Sauer UH Sauer-Eriksson AE 《Journal of structural biology》2006,155(3):445-457
The transthyretin-related protein (TRP) family comprises proteins predicted to be structurally related to the homotetrameric transport protein transthyretin (TTR). The function of TRPs is not yet fully established, but recent data suggest that they are involved in purine catabolism. We have determined the three-dimensional structure of the Escherichia coli TRP in two crystal forms; one at 1.65 A resolution in the presence of zinc, and the other at 2.1 A resolution in the presence of zinc and bromide. The structures revealed five zinc-ion-binding sites per monomer. Of these, the zinc ions bound at sites I and II are coordinated in tetrahedral geometries to the side chains of residues His9, His96, His98, Ser114, and three water molecules at the putative ligand-binding site. Of these four residues, His9, His98, and Ser114 are conserved. His9 and His98 bind the central zinc (site I) together with two water molecules. The side chain of His98 also binds to the zinc ion at site II. Bromide ions bind at site I only, replacing one of the water molecules coordinated to the zinc ion. The C-terminal four amino acid sequence motif Y-[RK]-G-[ST] constitutes the signature sequence of the TRP family. Two Tyr111 residues form direct hydrogen bonds to each other over the tetramer interface at the area, which in TTR constitutes the rear part of its thyroxine-binding channel. The putative substrate/ligand-binding channel of TRP is consequently shallower and broader than its counterpart in TTR. 相似文献
17.
Elastic behavior of RecA-DNA helical filaments 总被引:1,自引:0,他引:1
Escherichia coli RecA protein forms a right-handed helical filament with DNA molecules and has an ATP-dependent activity that exchanges homologous strands between single-stranded DNA (ssDNA) and duplex DNA. We show that the RecA-ssDNA filamentous complex is an elastic helical molecule whose length is controlled by the binding and release of nucleotide cofactors. RecA-ssDNA filaments were fluorescently labelled and attached to a glass surface inside a flow chamber. When the chamber solution was replaced by a buffer solution without nucleotide cofactors, the RecA-ssDNA filament rapidly contracted approximately 0.68-fold with partial filament dissociation. The contracted filament elongated up to 1.25-fold when a buffer solution containing ATPgammaS was injected, and elongated up to 1.17-fold when a buffer solution containing ATP or dATP was injected. This contraction-elongation behavior was able to be repeated by the successive injection of dATP and non-nucleotide buffers. We propose that this elastic motion couples to the elastic motion and/or the twisting rotation of DNA strands within the filament by adjusting their helical phases. 相似文献
18.
Helicobacter pylori causes gastritis, gastric ulcer and gastric cancer. Though DNA replication and its control are central to bacterial proliferation, pathogenesis, virulence and/or dormancy, our knowledge of DNA synthesis in slow growing pathogenic bacteria like H. pylori is still preliminary. Here, we review the current understanding of DNA replication, replication restart and recombinational repair in H. pylori. Several differences have been identified between the H. pylori and Escherichia coli replication machineries including the absence of DnaC, the helicase loader usually conserved in gram-negative bacteria. These differences suggest different mechanisms of DNA replication at initiation and restart of stalled forks in H. pylori. 相似文献
19.
Summary We examined the possibility that the recA441 mutation, which partially suppresses the UV sensitivity of uvr recF mutant bacteria, exerts its effect by coding for an altered RecA protein that competes more efficiently than the RecA+ protein with SSB for ssDNA in vivo. Using an assay measuring recombination between UV-damaged DNA and intact homologous DNA, we found that the introduction of the recA441 mutation partially suppressed the defects in recombination in bacteria lacking RecF activity but not in bacteria with excess SSB, although recombination was affected more in recF mutants than in bacteria overproducing SSB. These results therefore do not support the hypothesis that RecA441 protein, or RecA protein with the help of RecF protein, is required during recombination of UV-damaged DNA to compete with SSB for ssDNA. 相似文献
20.
Friedberg I Nika K Tautz L Saito K Cerignoli F Friedberg I Godzik A Mustelin T 《FEBS letters》2007,581(13):2527-2533
A novel human dual-specific protein phosphatase (DSP), designated DUSP27, is here described. The DUSP27 gene contains three exons, rather than the predicted 4-14 exons, and encodes a 220 amino acid protein. DUSP27 is structurally similar to other small DSPs, like VHR and DUSP13. The location of DUSP27 on chromosome 10q22, 50 kb upstream of DUSP13, suggests that these two genes arose by gene duplication. DUSP27 is an active enzyme, and its kinetic parameters and were determined. DUSP27 is a cytosolic enzyme, expressed in skeletal muscle, liver and adipose tissue, suggesting its possible role in energy metabolism. 相似文献