首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Mice deficient in the Xeroderma pigmentosum group A (Xpa) gene are defective in nucleotide excision repair (NER) and highly susceptible to skin carcinogenesis after dermal exposure to UV light or chemicals. Min (multiple intestinal neoplasia) mice, heterozygous for a germline nonsense mutation in the tumor suppressor gene adenomatous polyposis coli (Apc), develop intestinal tumors spontaneously and show additional intestinal tumors after exposure to the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). In this study, we investigated the impact of loss of XPA function on PhIP-induced intestinal tumorigenesis in F1 offspring of Min/+ (Apc+/−) mice crossed with Xpa gene-deficient mice. Apc+/− mice lacking both alleles of Xpa had higher susceptibility towards toxicity of PhIP, higher levels of PhIP–DNA adducts in the middle and distal small intestines, as well as in liver, and a higher number of small intestinal tumors at 11 weeks, compared with Apc+/− mice with one or two intact Xpa alleles. Localization of tumors was not affected, being highest in middle and distal small intestines in all genotypes. At 11 weeks of age, the number of spontaneous intestinal tumors was not significantly increased by homozygous loss of Xpa, but untreated Apc+/−/Xpa−/− mice had significantly shorter life-spans than their XPA-proficient littermates. Heterozygous loss of Xpa did not affect any of the measured end points. In conclusion, the Xpa gene and the NER pathway are involved in repair of bulky PhIP–DNA adducts in the intestines and the liver, and most probably of DNA lesions leading to spontaneous intestinal tumors. These results confirm a role of the NER pathway also in protection against cancer in internal organs, additional to its well-known importance in protection against skin cancer. An effect of Apc+/− on adduct levels, additional to that of Xpa−/−, indicates that the truncated APC protein may affect a repair pathway other than NER.  相似文献   

2.
Interactions between genes and environment play a critical role in the pathogenesis of type 2 diabetes. Low birth weight, due to genetic and environmental variables affecting fetal growth, is associated with increased susceptibility to the development of type 2 diabetes and metabolic disorders in adulthood. Clinical studies have shown that polymorphisms in the Insulin-like growth factor 1 (IGF-1) gene or heterozygous mutations in IGF-1 and IGF-1 receptor (IGF-1R) genes, resulting in reduced IGF-1 action, are associated with low birth weight and post-natal growth. Mice lacking one of the IGF-1R alleles (Igf1r+/−) exhibit a 10% reduction in post-natal growth, and develop glucose intolerance (males) and insulin resistance (males and females) as they age. To investigate whether adverse environmental factors could accelerate the onset of the metabolic syndrome, we conducted a short duration intervention of high fat diet (HFD) feeding in male and female Igf1r+/− and wild-type (WT) control mice. The HFD resulted in insulin resistance, hyperglycemia, and impaired glucose tolerance in males of both genotypes whereas in females exacerbated diabetes was observed only in the Igf1r+/− genotype, thus suggesting a sexual dimorphism in the influence of obesity on the genetic predisposition to diabetes caused by reduced IGF-1 action.  相似文献   

3.
Developmental signaling pathways hold the keys to unlocking the promise of adult tissue regeneration, and to inhibiting carcinogenesis. Patients with mutations in the Adenomatous Polyposis Coli (APC) gene are at increased risk of developing hepatoblastoma, an embryonal form of liver cancer, suggesting that Wnt affects hepatic progenitor cells. To elucidate the role of APC loss and enhanced Wnt activity in liver development, we examined APC mutant and wnt inducible transgenic zebrafish. APC+/− embryos developed enlarged livers through biased induction of hepatic gene programs and increased proliferation. Conversely, APC−/− embryos formed no livers. Blastula transplantations determined that the effects of APC loss were cell autonomous. Induction of wnt modulators confirmed biphasic consequences of wnt activation: endodermal pattern formation and gene expression required suppression of wnt signaling in early somitogenesis; later, increased wnt activity altered endodermal fate by enhancing liver growth at the expense of pancreas formation; these effects persisted into the larval stage. In adult APC+/− zebrafish, increased wnt activity significantly accelerated liver regeneration after partial hepatectomy. Similarly, liver regeneration was significantly enhanced in APCMin/+ mice, indicating the conserved effect of Wnt pathway activation in liver regeneration across vertebrate species. These studies reveal an important and time-dependent role for wnt signaling during liver development and regeneration.  相似文献   

4.
5.
A mutation of Atp2a2 gene encoding the sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) causes Darier's disease in human and null mutation in one copy of Atp2a2 leads to a high incidence of squamous cell tumor in a mouse model. In SERCA2 heterozygote (SERCA2+/−) mice keratinocytes, mechanisms involved in partial depletion of SERCA2 gene and its related tumor induction have not been studied. In this study, we investigated Ca2+ signaling and differential gene expression in primary cultured keratinocytes from SERCA2+/− mice. SERCA2+/− keratinocytes showed reduced initial increases in intracellular concentration of calcium in response to ATP, a G-protein coupled receptor agonist, and higher store-operated Ca2+ entry with the treatment of thapsigargin, an inhibitor of SERCA, compared to wild type kerationcytes. Protein expressions of plasma membrane Ca2+ ATPases, NFATc1, phosphorylated ERK, JNK, and phospholipase γ1 were increased in SERCA2+/− keratinocytes. Using the gene fishing system, we first found in SERCA2+/− keratinocytes that gene level of tumor-associated calcium signal transducer 1, crystalline αB, procollagen XVIII α1, and nuclear factor I-B were increased. Expression of involucrin, a marker of keratinocyte differentiation, was decreased in SERCA2+/− keratinocytes. These results suggest that the alterations of Ca2+ signaling by SERCA2 haploinsufficiency alternate the gene expression of tumor induction and differentiation in keratinocytes.  相似文献   

6.
Heme oxygenase-1 (HO-1) is an antioxidative and cytoprotective enzyme, which may protect neoplastic cells against anticancer therapies, thereby promoting the progression of growing tumors. Our aim was to investigate the role of HO-1 in cancer induction. Experiments were performed in HO-1+/+, HO-1+/−, and HO-1−/− mice subjected to chemical induction of squamous cell carcinoma with 7,12-dimethylbenz[a]anthracene and phorbol 12-myristate 13-acetate. Measurements of cytoprotective genes in the livers evidenced systemic oxidative stress in the mice of all the HO-1 genotypes. Carcinogen-induced lesions appeared earlier in HO-1−/− and HO-1+/− than in wild-type animals. They also contained much higher concentrations of vascular endothelial growth factor and keratinocyte chemoattractant, but lower levels of tumor necrosis factor-α and interleukin-12. Furthermore, tumors grew much larger in HO-1 knockouts than in the other groups, which was accompanied by an increased rate of animal mortality. However, pathomorphological analysis indicated that HO-1−/− lesions were mainly large but benign papillomas. In contrast, in mice expressing HO-1, most lesions displayed dysplastic features and developed to invasive carcinoma. Thus, HO-1 may protect healthy tissues against carcinogen-induced injury, but in already growing tumors it seems to favor their progression toward more malignant forms.  相似文献   

7.
The human Niemann–Pick C1 (NPC1) gene has been found to be associated with extreme (early-onset and morbid-adult) obesity and type 2 diabetes independent of body weight. We previously performed growth studies using BALB/cJ Npc1 normal (Npc1+/+) and Npc1 heterozygous (Npc1+/−) mice and determined that decreased Npc1 gene dosage interacts with a high-fat diet to promote weight gain and adiposity. The present study was performed using both BALB/cJ and C57BL/6J Npc1+/+ and Npc1+/− mice to determine if decreased Npc1 gene dosage predisposes to metabolic features associated with type 2 diabetes. The results indicated that C57BL/6J Npc1+/− mice, but not BALB/cJ Npc1+/− mice, have impaired glucose tolerance when fed a low-fat diet and independent of body weight. The results also suggest that an accumulation of liver free fatty acids and hepatic lipotoxicity marked by an elevation in the amount of plasma alanine aminotransferase (ALT) may be responsible for hepatic insulin resistance and impaired glucose tolerance. Finally, the peroxisome-proliferator activated receptor α (PPARα) and sterol regulatory element-binding protein-1 (SREBP-1) pathways known to have a central role in regulating free fatty acid metabolism were downregulated in the livers, but not in the adipose or muscle, of C57BL/6J Npc1+/− mice compared to C57BL/6J Npc1+/+ mice. Therefore, decreased Npc1 gene dosage among two different mouse strains interacts with undefined modifying genes to manifest disparate yet often related metabolic diseases.  相似文献   

8.
The β-1,4-galactosyltransferase (β-1,4-GalT) V whose human and mouse genes were cloned by us has been suggested to be involved in the biosynthesis of N-glycans and O-glycans, and lactosylceramide. To determine its biological function, β-1,4-GalT V (B4galt5) mutant mice obtained by a gene trap method were analyzed. Analysis of pre- and post-implantation embryos revealed that the B4galt5−/− mice die by E10.5 while B4galt5+/− mice were born and grown normally. Histological study showed that most tissues are formed in B4galt5−/− embryos but their appearance at E10.5 is close to that of B4galt5+/− embryos at E9.0-9.5. The results indicate that the growth is delayed by one to one and half day in B4galt5−/− embryos when compared to B4galt5+/− embryos, which results in early death of the embryos by E10.5, probably due to hematopoietic and/or placental defects.  相似文献   

9.

Background

Our previous works have demonstrated that Helicobacter pylori (Hp) infection can alter histone H3 serine 10 phosphorylation status in gastric epithelial cells. However, whether Helicobacter pylori‐induced histone H3 serine 10 phosphorylation participates in gastric carcinogenesis is unknown. We investigate the expression of histone H3 serine 10 phosphorylation in various stages of gastric disease and explore its clinical implication.

Materials and Methods

Stomach biopsy samples from 129 patients were collected and stained with histone H3 serine 10 phosphorylation, Ki67, and Helicobacter pylori by immunohistochemistry staining, expressed as labeling index. They were categorized into nonatrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, low‐grade intraepithelial neoplasia, high‐grade intraepithelial neoplasia, and intestinal‐type gastric cancer groups. Helicobacter pylori infection was determined by either 13C‐urea breath test or immunohistochemistry staining.

Results

In Helicobacter pylori‐negative patients, labeling index of histone H3 serine 10 phosphorylation was gradually increased in nonatrophic gastritis, chronic atrophic gastritis, intestinal metaplasia groups, peaked at low‐grade intraepithelial neoplasia, and declined in high‐grade intraepithelial neoplasia and gastric cancer groups. In Helicobacter pylori‐infected patients, labeling index of histone H3 serine 10 phosphorylation followed the similar pattern as above, with increased expression over the corresponding Helicobacter pylori‐negative controls except in nonatrophic gastritis patient whose labeling index was decreased when compared with Helicobacter pylori‐negative control. Labeling index of Ki67 in Helicobacter pylori‐negative groups was higher in gastric cancer than chronic atrophic gastritis and low‐grade intraepithelial neoplasia groups, and higher in intestinal metaplasia group compared with chronic atrophic gastritis group. In Helicobacter pylori‐positive groups, Ki67 labeling index was increased stepwise from nonatrophic gastritis to gastric cancer except slightly decrease in chronic atrophic gastritis group. In addition, we noted that histone H3 serine 10 phosphorylation staining is accompanied with its location changes from gastric gland bottom expanded to whole gland as disease stage progress.

Conclusions

These results indicate that stepwise gastric carcinogenesis is associated with altered histone H3 serine 10 phosphorylation, Helicobacter pylori infection enhances histone H3 serine 10 phosphorylation expression in these processes; it is also accompanied with histone H3 serine 10 phosphorylation location change from gland bottom staining expand to whole gland expression. The results suggest that epigenetic dysregulation may play important roles in Helicobacter pylori‐induced gastric cancer.  相似文献   

10.
Leishmania (L.) major is a protozoan parasite that infects mammalian hosts and causes a spectrum of disease manifestations that is strongly associated with the genetic background of the host. Interleukin (IL)-6 is an acute phase proinflammatory cytokine, known in vitro to be involved in the inhibition of the generation of regulatory T cells. IL-6-deficient mice were infected with L. major, and T cell and monocyte subsets were analyzed with flow cytometry. Our data show that at the site of infection in the footpad and in the draining popliteal lymph node, numbers of regulatory T cells remain unchanged between WT and IL-6-deficient mice. However, the spleens of IL-6−/− mice contained fewer regulatory T cells after infection with L. major. The development of cutaneous lesions is similar between WT and IL-6-deficient mice, while parasite burden in IL-6−/− mice is reduced compared to WT. The development of IFN-γ or IL-10 producing T cells is similar in IL-6−/− mice. Despite a comparable adaptive T cell response, IL-6-deficient mice develop an earlier peak of some inflammatory cytokines than WT mice. This data indicate that the role of IL-6 in the differentiation of regulatory T cells is complex in vivo, and the effect of an absence of this cytokine can be counter-intuitive.  相似文献   

11.
12.
Peroxisome deficiency in liver causes hepatosteatosis both in patients and in mice. Here, we studied the mechanisms that contribute to this lipid accumulation and to activation of peroxisome proliferator activated receptor α (PPARα) by using liver-specific Pex5−/− mice (L-Pex5−/− mice). Surprisingly, steatosis was accompanied both by increased mitochondrial β-oxidation capacity, confirming previous observations, and by impaired de novo lipid synthesis mediated by reduced expression of sterol regulatory element binding protein 1c and its targets. As a consequence, when challenged with a high fat diet, L-Pex5−/− mice were protected from adiposity. Hepatic fatty acid uptake was strongly increased whereas the expression of apolipoproteins and the lipoprotein assembly factor microsomal triglyceride transfer protein were markedly reduced resulting in reduced secretion of very low density lipoproteins. Most of these changes seemed to be orchestrated by the endogenous activation of PPARα, challenging the assumption that PPARα activation in hepatocytes requires fatty acid synthase dependent de novo fatty acid synthesis. Expression of cholesterol synthesizing enzymes and cholesterol levels were not affected in peroxisome deficient liver. In conclusion, increased fatty acid uptake driven by endogenous PPARα activation and reduced fatty acid secretion cause hepatosteatosis in peroxisome deficient livers.  相似文献   

13.
L-type amino-acid transporter 1 (LAT1) is the first identified light chain of CD98 molecule, disulfide-linked to a heavy chain of CD98. Following cDNA cloning of chicken full-length LAT1, we have constructed targeting vectors for the disruption of chicken LAT1 gene from genomic DNA of chicken LAT1 consisting of 5.4 kb. We established five homozygous LAT1-disrupted (LAT1−/−) cell clones, derived from a heterozygous LAT1+/− clone of DT40 chicken B cell line. Reactivity of anti-chicken CD98hc monoclonal antibody (mAb) with LAT1−/− DT40 cells was markedly decreased compared with that of wild-type DT40 cells. All LAT1−/− cells were deficient in L-type amino-acid transporting activity, although alternative-splice variant but not full-length mRNA of LAT1 was detected in these cells. LAT1−/− DT40 clones showed outstandingly slow growth in liquid culture and decreased colony-formation capacity in soft agar compared with wild-type DT40 cells. Cell-cycle analyses indicated that LAT1−/− DT40 clones have prolonged cell-cycle phases compared with wild-type or LAT1+/− DT40 cells. Knockdown of human LAT1 by small interfering RNAs resulted in marked in vitro cell-growth inhibition of human cancer cells, and in vivo tumor growth of HeLa cells in athymic mice was significantly inhibited by anti-human LAT1 mAb. All these results indicate essential roles of LAT1 in the cell proliferation and occurrence of malignant phenotypes and that LAT1 is a promising candidate as a molecular target of human cancer therapy.  相似文献   

14.
Keratan sulfate (KS) proteoglycan side chains are abundant in the human cartilage matrix, but these chains have been said to be absent in murine skeletal tissues. We previously showed that KS suppresses cartilage damage and ameliorates inflammation in mice arthritis model. Because mice deficient of N-acetylglucosamine 6-O-sulfotransferase-1 (GlcNAc6ST-1) (KS biosynthesis enzyme) are now available, we decided to do further examinations.We examined, in culture, the difference between GlcNAc6ST-1−/− and wild-type (WT) mice for interleukin (IL)-1α-induced glycosaminoglycan (GAG) release from the articular cartilage. Arthritis was induced by intravenous administration of an anti-type II collagen antibody cocktail and subsequent intraperitoneal injection of lipopolysaccharide. We examined the differences in arthritis severities in the two genotypes. After intraperitoneal KS administration in phosphate-buffered saline (PBS) or PBS alone, we evaluated the potential of KS in ameliorating arthritis and protecting against cartilage damage in deficient mice.GAG release induced by IL-1α in the explants, and severity of arthritis were greater in GlcNAc6ST-1−/− mice than their WT littermates. Intraperitoneal KS administration effectively suppressed arthritis induction in GlcNAc6ST-1−/− mice. Thus, GlcNAc6ST-1−/− mice cartilage is more fragile than WT mice cartilage, and exogenous KS can suppress arthritis induction in GlcNAc6ST-1−/− mice. Vestigial KS chain or altered glycosylation in articular cartilage in GlcNAc6ST-1−/− mice may be protective against arthritis and associated cartilage damage as well as cartilage damage in culture. KS may offer therapeutic opportunities for chondroprotection and suppression of joint damage in inflammatory arthritis and may become a therapeutic agent for treating rheumatoid arthritis.  相似文献   

15.
16.
STARD10, a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) protein family, is highly expressed in the liver and has been shown to transfer phosphatidylcholine. Therefore it has been assumed that STARD10 may function in the secretion of phospholipids into the bile. To help elucidate the physiological role of STARD10, we produced Stard10 knockout mice (Stard10−/−) and studied their phenotype. Neither liver content nor biliary secretion of phosphatidylcholine was altered in Stard10−/− mice. Unexpectedly, the biliary secretion of bile acids from the liver and the level of taurine-conjugated bile acids in the bile were significantly higher in Stard10−/− mice than wild type (WT) mice. In contrast, the levels of the secondary bile acids were lower in the liver of Stard10−/− mice, suggesting that the enterohepatic cycling is impaired. STARD10 was also expressed in the gallbladder and small intestine where the expression level of apical sodium dependent bile acid transporter (ASBT) turned out to be markedly lower in Stard10−/− mice than in WT mice when measured under fed condition. Consistent with the above results, the fecal excretion of bile acids was significantly increased in Stard10−/− mice. Interestingly, PPARα-dependent genes responsible for the regulation of bile acid metabolism were down-regulated in the liver of Stard10/ mice. The loss of STARD10 impaired the PPARα activity and the expression of a PPARα-target gene such as Cyp8b1 in mouse hepatoma cells. These results indicate that STARD10 is involved in regulating bile acid metabolism through the modulation of PPARα-mediated mechanism.  相似文献   

17.
18.
19.
Bcl11b is a haploinsufficient tumor suppressor gene and expressed in many tissues such as thymus, brain and skin. Irradiated Bcl11b+/− heterozygous mice mostly develop thymic lymphomas, but the preference of Bcl11b inactivation for thymic lymphomas remains to be addressed. We produced Bcl11b+/− heterozygous and Bcl11b wild-type mice of p53+/− background and compared their incidence of γ-ray induced thymic lymphomas. Majority of the tumors in p53+/− mice were skin tumors, and only 5 (36%) of the 14 tumors were thymic lymphomas. In contrast, Bcl11b+/−p53+/− doubly heterozygous mice developed thymic lymphomas at the frequency of 27 (79%) of the 34 tumors developed (P = 0.008). This indicates the preference of Bcl11b impairment for thymic lymphoma development. We also analyzed loss of the wild-type alleles in the 27 lymphomas, a predicted consequence given by γ-irradiation. However, the loss frequency was low, only six (22%) for Bcl11b and five (19%) for p53. The frequencies did not differ from those of spontaneously developed thymic lymphomas in the doubly heterozygous mice, though the latency of lymphoma development markedly differed between them. This suggests that the main contribution of irradiation at least in those mice is not for the tumor initiation by inducing allelic losses but probably for the promotion of thymic lymphoma development.  相似文献   

20.
Multiple signaling molecules, including Fibroblast Growth Factor (FGF) and Wnt, induce two patches of ectoderm on either side of the hindbrain to form the progenitor cell population for the inner ear, or otic placode. Here we report that in Spry1, Spry2 compound mutant embryos (Spry1−/−; Spry2−/− embryos), the otic placode is increased in size. We demonstrate that the otic placode is larger due to the recruitment of cells, normally destined to become cranial epidermis, into the otic domain. The enlargement of the otic placode observed in Spry1−/−; Spry2−/− embryos is preceded by an expansion of a Wnt8a expression domain in the adjacent hindbrain. We demonstrate that both the enlargement of the otic placode and the expansion of the Wnt8a expression domain can be rescued in Spry1−/−; Spry2−/− embryos by reducing the gene dosage of Fgf10. Our results define a FGF-responsive window during which cells can be continually recruited into the otic domain and uncover SPRY regulation of the size of a putative Wnt inductive center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号