首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial ion transport is mainly under the control of intracellular cAMP and Ca2+ signaling. Although the molecular mechanisms of cAMP-induced epithelial ion secretion are well defined, those induced by Ca2+ signaling remain poorly understood. Because calcium-sensing receptor (CaSR) activation results in an increase in cytosolic Ca2+ ([Ca2+]cyt) but a decrease in cAMP levels, it is a suitable receptor for elucidating the mechanisms of [Ca2+]cyt-mediated epithelial ion transport and duodenal bicarbonate secretion (DBS). CaSR proteins have been detected in mouse duodenal mucosae and human intestinal epithelial cells. Spermine and Gd3+, two CaSR activators, markedly stimulated DBS without altering duodenal short circuit currents in wild-type mice but did not affect DBS and duodenal short circuit currents in cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice. Clotrimazole, a selective blocker of intermediate conductance Ca2+-activated K+ channels but not chromanol 293B, a selective blocker of cAMP-activated K+ channels (KCNQ1), significantly inhibited CaSR activator-induced DBS, which was similar in wild-type and KCNQ1 knockout mice. HCO3 fluxes across epithelial cells were activated by a CFTR activator, but blocked by a CFTR inhibitor. CaSR activators induced HCO3 fluxes, which were inhibited by a receptor-operated channel (ROC) blocker. Moreover, CaSR activators dose-dependently raised cellular [Ca2+]cyt, which was abolished in Ca2+-free solutions and inhibited markedly by selective CaSR antagonist calhex 231, and ROC blocker in both animal and human intestinal epithelial cells. Taken together, CaSR activation triggers Ca2+-dependent DBS, likely through the ROC, intermediate conductance Ca2+-activated K+ channels, and CFTR channels. This study not only reveals that [Ca2+]cyt signaling is critical to modulate DBS but also provides novel insights into the molecular mechanisms of CaSR-mediated Ca2+-induced DBS.  相似文献   

2.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 μM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+ fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hype rpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca2+-ATPase of endoplasmic reticulum and by affecting Ca2+-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-resol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.  相似文献   

3.
Glucagon induces intracellular Ca2+ ([Ca2+]i) elevation by stimulating glucagon receptor (GCGR). Such [Ca2+]i signaling plays important physiological roles, including glycogenolysis and glycolysis in liver cells and the survival of β-cells. Previous studies indicated that phospholipase C (PLC) might be involved in glucagon-mediated [Ca2+]i response. Other studies also debated whether cAMP accumulation mediated by GCGR/Gαs coupling contributes to [Ca2+]i elevation. But the exact mechanisms remain uncertain. In the present study, we found that glucagon induces [Ca2+]i elevation in HEK293 cells expressing GCGR. Removing extracellular Ca2+ did not affect glucagon-stimulated [Ca2+]i response. But depleting the intracellular Ca2+ store by thapsigargin completely inhibited glucagon-induced [Ca2+]i response. Experiments with forskolin and adenylyl cyclase inhibtor revealed that cAMP is not the cause of [Ca2+]i response. Further studies with Gαq/11 RNAi and pertussis toxin (PTX) indicated that both Gαq/11 and Gαi/o are involved. Combination of Gαq/11 RNAi and Gαi/o inhibition almost completely abolished glucagon-induced [Ca2+]i signaling.  相似文献   

4.
The calcium-sensing receptors (CaSRs) exist in a variety of tissues and cells. In 2001, Canaff et al. first identified its expression in liver tissue and primary cultured hepatocytes, and demonstrated that GdCl3 (a specific agonist of CaSR) can cause an increase in intracellular calcium and bile flow. However, authors did not elucidate its mechanisms. Therefore, this study sought to detect CaSR expression in BRL cell line, which is derived from buffalo rat liver, and to reveal the cellular signal transduction pathway by which the CaSR activation results in increased intracellular calcium by BRL cells. In this study, the expression and distribution of CaSR were detected by RT-PCR, Western blotting, and immunofluorescence, and the intracellular calcium concentration [Ca2+]i was measured using LCSM. The results showed that CaSR mRNA and protein were expressed in BRL cells and mainly distributed in cell membrane and cytoplasm. Increased extracellular calcium or GdCl3 could increase intracellular calcium concentration and CaSR expression. Moreover, this increase of [Ca2+]i could be inhibited or even abolished by U73122 (a specific inhibitor of PLC), 2-APB (an inhibitor of IP3 receptor), and thapsigargin (an inhibitor of endoplasmic reticulum calcium pump). In conclusion, CaSR is functionally expressed in BRL cells, and activation of CaSR involves in increased intracellular calcium through Gq–PLC–IP3 pathway.  相似文献   

5.
Cardiac hypertrophy is a common pathological change accompanying cardiovascular disease. Recently, some evidence indicated that calcium-sensing receptor (CaSR) expressed in the cardiovascular tissue. However, the functional involvement of CaSR in cardiac hypertrophy remains unclear. Previous studies have shown that CaSR caused accumulation of inositol phosphate to increase the release of intracellular calcium. Moreover, Ca2+-dependent phosphatase calcineurin (CaN) played a vital role in the development of cardiac hypertrophy. Therefore, we investigated the expression of CaSR in cardiac hypertrophy-induced by angiotensin II (AngII) and the effects of CaSR activated by GdCl3 on the related signaling transduction pathways. The results showed that AngII induced cardiac hypertrophy and up-regulated the expression of CaSR, meanwhile increased the intracellular calcium concentration ([Ca2+]i) and activated CaN hypertrophic signaling pathway. Compared with AngII alone, the above changes were further obvious when adding GdCl3. But the effects of GdCl3 on the cardiac hypertrophy were attenuated by CsA, a specific inhibitor of CaN. In conclusion, these results suggest that CaSR is involved in cardiac hypertrophy-induced by AngII through CaN pathway in cultured neonatal rat cardiomyocytes.  相似文献   

6.
7.
The repetitive spiking of free cytosolic [Ca2+] ([Ca2+]i) during hormonal activation of hepatocytes depends on the activation and subsequent inactivation of InsP3-evoked Ca2+ release. The kinetics of both processes were studied with flash photolytic release of InsP3 and time resolved measurements of [Ca2+]i in single cells. InsP3 evoked Ca2+ flux into the cytosol was measured as d[Ca2+]i/dt, and the kinetics of Ca2+ release compared between hepatocytes and cerebellar Purkinje neurons. In hepatocytes release occurs at InsP3 concentrations greater than 0.1–0.2 μM. A comparison with photolytic release of metabolically stable 5-thio-InsP3 suggests that metabolism of InsP3 is important in determining the minimal concentration needed to produce Ca2+ release. A distinct latency or delay of several hundred milliseconds after release of low InsP3 concentrations decreased to a minimum of 20–30 ms at high concentrations and is reduced to zero by prior increase of [Ca2+]i, suggesting a cooperative action of Ca2+ in InsP3 receptor activation. InsP3-evoked flux and peak [Ca2+]i increased with InsP3 concentration up to 5–10 μM, with large variation from cell to cell at each InsP3 concentration. The duration of InsP3-evoked flux, measured as 10–90% risetime, showed a good reciprocal correlation with d[Ca2+]i/dt and much less cell to cell variation than the dependence of flux on InsP3 concentration, suggesting that the rate of termination of the Ca2+ flux depends on the free Ca2+ flux itself. Comparing this data between hepatocytes and Purkinje neurons shows a similar reciprocal correlation for both, in hepatocytes in the range of low Ca2+ flux, up to 50 μM · s−1 and in Purkinje neurons at high flux up to 1,400 μM · s−1. Experiments in which [Ca2+]i was controlled at resting or elevated levels support a mechanism in which InsP3-evoked Ca2+ flux is inhibited by Ca2+ inactivation of closed receptor/channels due to Ca2+ accumulation local to the release sites. Hepatocytes have a much smaller, more prolonged InsP3-evoked Ca2+ flux than Purkinje neurons. Evidence suggests that these differences in kinetics can be explained by the much lower InsP3 receptor density in hepatocytes than Purkinje neurons, rather than differences in receptor isoform, and, more generally, that high InsP3 receptor density promotes fast rising, rapidly inactivating InsP3-evoked [Ca2+]i transients.  相似文献   

8.
Abstract— Regulations of the increase in intracellular Ca2+concentration ([Ca2+]i) and inositol 1, 4, 5-trisphosphate (IP3) production by increasing intracellular cyclic AMP (cAMP) levels or activating protein kinase C (PKC) were studied in rat frontocortical cultured neurons. Amitriptyline (AMI; 1 mM), a trìcyclic antidepressant, and bradykinin (BK; 1 μM) stimulated IP3 production and caused transient [Ca2+]i increases. Pretreatment with forskolin (100mkUM, 15 min) decreased the AMI-and BK-induced [Ca2+]i increases by 33 and 48%, respectively. However, this treatment had no effect on the AMI-and BK-induced IP3 productions. Dibutyryl-cAMP (2 mM, 15 min) also decreased the AMI-and BK-induced [Ca2+]i increases by 23 and 47%, respectively. H-8 (30 μM), an inhibitor of protein kinase A (PKA), attenuated the ability of forskolin to inhibit the AMI-and BK-induced [Ca2+]i increases, suggesting that the activation of cAMP/PKA was involved in these inhibitory effects of forskolin. On the other hand, forskolin treatment had no effect on 20 mM caffeine-, 10 μM glutamate-, or 50 mM K+-induced [Ca2+]i increases. Pretreatment with phorbol 12-myristate 13-acetate (PMA; 100 nM, 90 min) decreased both the AMI-induced [Ca2+]i increases and the IP3 production by 31 and 25%, respectively. H-7 (200 μM), an inhibitor of PKC, inhibited the ability of PMA to attenuate the [Ca2+]i increases. PMA also inhibited the BK-induced IP3 production and the [Ca2+]i increases. Taken together, these results suggest that activation of cAMP/ PKA may inhibit the IP3-mediated Ca2+ release from internal stores; on the other hand, activation of PKC may inhibit the phosphatidylinositol 4,5-bisphosphate breakdown and consequently reduce the [Ca2+]i increases or inhibit independently both responses. PKA and PKC may differently regulate the phosphatidylinositol-Ca2+ signaling in rat frontocortical cultured neurons.  相似文献   

9.
The objective of this study was to examine whether S-RNase plays a specific role in the pre-germinated Pyrus pollen. Effects of exogenous RNase and endogenous S-RNase on concentration of cytosolic-free calcium ([Ca2+]i) variation of pre-germinated Pyrus pollen were studied. [Ca2+]i variation caused by different RNases were complex. In 1 h after being cultured, exogenous RNase, RNase T1 and RNase A, and endogenous incompatible ‘Hohsui’ RNase promoted the [Ca2+]i of ‘Hohsui’ pollen. Acid proteins of ‘Hohsui’ had no remarkable influence on the [Ca2+]i of self-pollen. Endogenous compatible ‘Kohsui’ RNase reduced the [Ca2+]i of ‘Hohsui’ pollen, but compatible ‘Hohsui’ RNase can stimulate the [Ca2+]i of ‘Kohsui’ pollen. RNase T1, RNase A and incompatible ‘Kohsui’ S-RNase can also make ‘Kohsui’ pollen [Ca2+]i increase. Different from ‘Hohsui’ pollen, acid proteins of ‘Hohsui’ pull down the ‘Kohsui’ pollen [Ca2+]i remarkably. Conclusion can be made that during the prophase of pollen germination, endogenous S-RNase has no specific effect on pollen [Ca2+]i changes.  相似文献   

10.
A rise in the intracellular concentration of ionized calcium ([Ca2+]i) is a primary signal for contraction in all types of muscles. Recent progress in the development of imaging techniques, with special accent on fluorescence confocal microscopy, and new achievements in the synthesis of organelle- and ion-specific fluorochromes provide an experimental basis for studying the relationship between the structural organization of living smooth muscle cells (SMCs) and features of calcium signaling at the subcellular level. Applying fluorescent confocal imaging, patch-clamp recording, immunostaining, and flash photolysis techniques to freshly isolated SMCs, we have demonstrated that: (i) Ca2+ sparks are mediated by spontaneous clustered opening of ryanodine receptors (RyRs) and occur at the highest rate at preferred sites (frequent discharge sites, FDSs), the number of which depends on SMC type; (ii) FDSs are associated with sub-plasmalemmal sarcoplasmic reticulum (SR) elements, but not with polarized mitochondria; (iii) Ca2+ spark frequency increases with membrane depolarization in voltage-clamped SMCs or following neurotransmitter application to SMCs, in which the membrane potential was not controlled, leading to spark summation and resulting in a cell-wide increase in [Ca2+]i and myocyte contraction; (iv) cross-talk between RyRs and inositol trisphosphate receptors (IP3Rs) is an important determinant of the [Ca2+]i dynamics and recruits neighboring Ca2+-release sites to generate [Ca2+]i waves; (v) [Ca2+]i waves induced by depolarization of the plasma membrane or by noradrenaline or caffeine, but not by carbachol (CCh), originate at FDSs; (vi) Ca2+-dependent K+ and Cl- channels sense the local changes in [Ca2+]i during a Ca2+ spark and thereby may couple changes in [Ca2+]i within a microdomain to changes in the membrane potential, thus affecting the cell excitability; (vii) the muscarinic cation current (mI cat) does not mirror changes in [Ca2+]i, thus reflecting the complexity of [Ca2+]i — muscarinic cationic channel coupling; (viii) RyR-mediated Ca2+ release, either spontaneous or caffeine-induced, does not augment mI cat; (ix) intracellular flash release of Ca2+ is less effective in augmentation of mI cat than flash release of IP3, suggesting that IP3 may sensitize muscarinic cationic channels to Ca2+; (x) intracellular flash release of IP3 fails to augment mI cat in SMCs, in which [Ca2+]i was strongly buffered, suggesting that IP3 exerts no direct effect on muscarinic cationic channel gating, and that these channels sense an increase in [Ca2+]i rather than depletion of the IP3-dependent Ca2+ store; and (xi) predominant expression of IP3R type 1 in the peripheral SR provides a structural basis for a tight functional coupling between IP3R-mediated Ca2+ release and muscarinic cationic channel opening.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 455–465, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

11.
Airway smooth muscle (ASM) regulation of airway structure and contractility is critical in fetal/neonatal physiology in health and disease. Fetal lungs experience higher Ca2+ environment that may impact extracellular Ca2+ ([Ca2+]o) sensing receptor (CaSR). Well-known in the parathyroid gland, CaSR is also expressed in late embryonic lung mesenchyme. Using cells from 18-22 week human fetal lungs, we tested the hypothesis that CaSR regulates intracellular Ca2+ ([Ca2+]i) in fetal ASM (fASM). Compared with adult ASM, CaSR expression was higher in fASM, while fluorescence Ca2+ imaging showed that [Ca2+]i was more sensitive to altered [Ca2+]o. The fASM [Ca2+]i responses to histamine were also more sensitive to [Ca2+]o (0–2 mM) compared with an adult, enhanced by calcimimetic R568 but blunted by calcilytic NPS2143. [Ca2+]i was enhanced by endogenous CaSR agonist spermine (again higher sensitivity compared with adult). Inhibition of phospholipase C (U73122; siRNA) or inositol 1,4,5-triphosphate receptor (Xestospongin C) blunted [Ca2+]o sensitivity and R568 effects. NPS2143 potentiated U73122 effects. Store-operated Ca2+ entry was potentiated by R568. Traction force microscopy showed responsiveness of fASM cellular contractility to [Ca2+]o and NPS2143. Separately, fASM proliferation showed sensitivity to [Ca2+]o and NPS2143. These results demonstrate functional CaSR in developing ASM that modulates airway contractility and proliferation.  相似文献   

12.
13.
Summary Intracellular calcium [Ca2+] i measurements in cell suspension of gastrointestinal myocytes have suggested a single [Ca2+] i transient followed by a steady-state increase as the characteristic [Ca2+] i response of these cells. In the present study, we used digital video imaging techniques in freshly dispersed myocytes from the rabbit colon, to characterize the spatiotemporal pattern of the [Ca2+] i signal in single cells. The distribution of [Ca2+] i in resting and stimulated cells was nonhomogeneous, with gradients of high [Ca2+] i present in the subplasmalemmal space and in one cell pole. [Ca2+] i gradients within these regions were not constant but showed temporal changes in the form of [Ca2+] i oscillations and spatial changes in the form of [Ca2+] i waves. [Ca2+] i oscillations in unstimulated cells (n = 60) were independent of extracellular [Ca2+] and had a mean frequency of 12.6 +1.1 oscillations per min. The baseline [Ca2+], was 171 ± 13 nm and the mean oscillation amplitude was 194 ± 12 nm. Generation of [Ca2+] i waves was also independent of influx of extracellular Ca2+. [Ca2+] i waves originated in one cell pole and were visualized as propagation mostly along the subplasmalemmal space or occasionally throughout the cytoplasm. The mean velocity was 23 +3 m per sec (n = 6). Increases of [Ca2+] i induced by different agonists were encoded into changes of baseline [Ca2+] i and the amplitude of oscillations, but not into their frequency. The observed spatiotemporal pattern of [Ca2+] i regulation may be the underlying mechanism for slow wave generation and propagation in this tissue. These findings are consistent with a [Ca2+] i regulation whereby cell regulators modulate the spatiotemporal pattern of intracellularly generated [Ca2+] i oscillations.The authors thank Debbie Anderson for excellent technical assistance with the electron microscopy and Dr. M. Regoli for providing the NK-1 agonist [Sar9,Met(O2)11]-SP. This work was supported by National Institutes of Health Grants DK 40919 and DK 40675 and Veterans Administration Grant SMI.  相似文献   

14.

Background

The extracellular calcium-sensing receptor (CaSR) belongs to family C of the G protein coupled receptors. Whether the CaSR is expressed in the pulmonary artery (PA) is unknown.

Methods

The expression and distribution of CaSR were detected by RT-PCR, Western blotting and immunofluorescence. PA tension was detected by the pulmonary arterial ring technique, and the intracellular calcium concentration ([Ca2+]i) was detected by a laser-scanning confocal microscope.

Results

The expressions of CaSR mRNA and protein were found in both rat pulmonary artery smooth muscle cells (PASMCs) and PAs. Increased levels of [Ca2+]o (extracellular calcium concentration) or Gd3+ (an agonist of CaSR) induced an increase of [Ca2+]i and PAs constriction in a concentration-dependent manner. In addition, the above-mentioned effects of Ca2+ and Gd3+ were inhibited by U73122 (specific inhibitor of PLC), 2-APB (specific antagonist of IP3 receptor), and thapsigargin (blocker of sarcoplasmic reticulum calcium ATPase).

Conclusions

CaSR is expressed in rat PASMCs, and is involved in regulation of PA tension by increasing [Ca2+]i through G-PLC-IP3 pathway.  相似文献   

15.
Synaptically activated postsynaptic [Ca2+]i increases occur through three main pathways: Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ entry through ligand-gated channels, and Ca2+ release from internal stores. The first two pathways have been studied intensively; release from stores has been the subject of more recent investigations.Ca2+ release from stores in CNS neurons primarily occurs as a result of IP3 mobilized by activation of metabotropic glutamatergic and/or cholingergic receptors coupled to PLC. Ca2+ release is localized near spines in Purkinje cells and occurs as a wave in the primary apical dendrites of pyramidal cells in the hippocampus and cortex. The amplitude of the [Ca2+]i increase can reach several micromolar, significantly larger than the increase due to backpropagating spikes.The large amplitude, long duration, and unique location of the [Ca2+]i increases due to Ca2+ release from stores suggests that these increases can affect specific downstream signaling mechanisms in neurons.  相似文献   

16.
Extracellular ATP caused a dose-dependent accumulation of inositol phosphates and a rise in cytosolic free Ca2+ ([Ca2+]i) in C6 glioma cells with an EC50 of 60±4 and 10±5 M, respectively. The threshold concentration of ATP (3 M) for increasing [Ca2+]i was approximately 10-fold less than that for stimulating phosphoinositide (PI) turnover. The PI response showed a preference for ATP; ADP was about 3-fold less potent than ATP but had a comparable maximal stimulation (11-fold of the control). AMP and adenosine were without effect at concentrations up to 1 mM. ATP-stimulated PI metabolism was found to be partially dependent on extracellular Ca2+ and Na+ but was resistant to tetrodotoxin, saxitoxin, amiloride, ouabain, and inorganic blockers of Ca2+ channels (Co2+, Mn2+, La3+, or Cd2+). In Ca2+-free medium, ATP caused only a transient increase in [Ca2+]i as opposed to a sustained [Ca2+]i increase in normal medium. The ATP-induced elevation of [Ca2+]i was resistant to Na+ depletion and treatment with saxitoxin, verapamil and nisoldipine, but was attentuated by La3+. The differences in the characteristics of ATP-caused P1 hydrolysis and [Ca2+]i rise suggest that ATP receptors are independently coupled to phospholipase C and receptor-gated Ca2+ channels. Because of the robust effect of ATP in stimulating PI turnover and the apparent absence of P1-purinergic receptors, the C6 glioma cell line provides a useful model for investigating the transmembrane signalling pathway induced by extracellular ATP. The mechanisms underlying the unexpected finding of [Na+]o dependency for ATP-induced PI turnover require further investigation.Abbreviations PI phosphoinositide - [Ca2+]i cytosolic free Ca2+ concentration - PDBu phorbol 12, 13-dibutyrate - PSS physiological saline solution - IP inositol phosphates - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - IP4 inositol (1,3,4,5) tetrakisphosphate - PLC phospholipase C  相似文献   

17.
The heart of the decapod crustacean is activated by regular impulse bursts from the cardiac ganglion. The cardiac pump function depends on ganglionic burst frequency, burst duration, and burst impulse frequency. Here, we activated isolated lobster cardiac ostial muscle (Orbicularis ostii muscle, OOM) by stimulus trains in vitro in order to characterize the response of the contractile apparatus to [Ca2+]i . We employed stimulus trains that generate a steady state between the [Ca2+]i and force in order to estimate the Ca2+ sensitivity of myofilaments. Force and [Ca2+]i transients were simultaneously recorded using a silicon strain gauge and the fluorescence of iontophoretically microinjected fura-2 salt. We examined the effects of tetanus duration (TD), the interval between trains, and 6 M cyclopiazonic acid, an inhibitor of the SR Ca2+ pump, on the steady-state force–[Ca2+]i relationship. The instantaneous force–[Ca2+]i relationships appeared sigmoidal (EC50 and Hill coefficient, 98.8±32.7 nM and 2.47±0.20, mean ± SD, respectively), as did the curves superimposed after 500 ms following the start of stimulation, indicating that the force–[Ca2+]i relationship had reached a steady state at that time. Also, the maximum activated force (Fmax) was estimated using the steady-state force–[Ca2+]i relationship. Prolonged stimulus trains, decreasing the interval between recurrent trains from 5 to 2.5 s, and cyclopiazonic acid each increased the measured EC50 without changing Fmax. The EC50 correlated strongly with averaged [Ca2+]i over time. We conclude that the steady-state force–[Ca2+]i relationships in the OOM indicate cooperation between force generation and Ca2+ binding by the myofilaments. Our data also suggest the existence of a novel Ca2+-dependent mechanism which reduces Ca2+ sensitivity and accelerates relaxation of lobster cardiac muscle myofilaments.Communicated by L.C.-H. Wang  相似文献   

18.
Summary The patch-clamp technique and measurements of single cell [Ca2+] i have been used to investigate the importance of extracellular Na+ for carbohydrate-induced stimulation of RINm5F insulin-secreting cells. Using patch-clamp whole-cell (current-clamp) recordings the average cellular transmembrane potential was estimated to be –60±1 mV (n=83) and the average basal [Ca2+] i 102±6nm (n=37). When challenged with either glucose (2.5–10mm) ord-glyceraldehyde (10mm) the cells depolarized, which led to the initiation of Ca2+ spike potentials and a sharp rise in [Ca2+] i . Similar effects were also observed with the sulphonylurea compound tolbutamide (0.01–0.1mm). Both the generation of the spike potentials and the increase in [Ca2+] i were abolished when Ca2+ was removed from the bathing media. When all external Na+ was replaced with N-methyl-d-glucamine, in the continued presence of either glucose,d-glyceraldehyde or tolbutamide, a membrane repolarization resulted, which terminated Ca2+ spike potentials and attenuated the rise in [Ca2+] i . Tetrodotoxin (TTX) (1–2 m) was also found to both repolarize the membrane and abolish secretagogue-induced rises in [Ca2+] i .  相似文献   

19.
Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca2+ stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca2+ imaging, we found that the depletion of ER/SR Ca2+ stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca2+ ([Ca2+]i), followed by sustained increase depending on extracellular Ca2+. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na+/Ca2+ exchanger inhibitors, inhibited [Ca2+]i relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl3) or by an increased extracellular Ca2+([Ca2+]o) increased the concentration of intracelluar Ca2+, whereas, the sustained elevation of [Ca2+]i was reduced in the presence of SKF96365. Similarly, the duration of [Ca2+]i increase was also shortened in the absence of extracellular Ca2+. Western blot analysis showed that GdCl3 increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl3. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca2+-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.  相似文献   

20.
The present studies were conducted to investigate the mechanisms underlying the 1,25-dihydroxycholecalciferol (1,25(OH)2D3)-induced increase in intracellular Ca2+ ([Ca2+] i ) in individual CaCo-2 cells. In the presence of 2mm Ca2+, 1,25(OH)2D3-induced a rapid transient rise in [Ca2+] i in Fura-2-loaded cells in a concentration-dependent manner, which decreased, but did not return to baseline levels. In Ca2+-free buffer, this hormone still induced a transient rise in [Ca2+] i , although of lower magnitude, but [Ca2+] i then subsequently fell to baseline. In addition, 1,25(OH)2D3 also rapidly induced45Ca uptake by these cells, indicating that the sustained rise in [Ca2+] i was due to Ca2+ entry. In Mn2+-containing solutions, 1,25(OH)2D3 increased the rate of Mn2+ influx which was temporally preceded by an increase in [Ca2+] i . The sustained rise in [Ca2+] i was inhibited in the presence of external La3+ (0.5mm). 1,25(OH)2D3 did not increase Ba2+ entry into the cells. Moreover, neither high external K+ (75mm), nor the addition of Bay K 8644 (1 μm), an L-type, voltage-dependent Ca2+ channel agonist, alone or in combination, were found to increase [Ca2+] i , 1,25(OH)2D3 did, however, increase intracellular Na+ in the absence, but not in the presence of 2mm Ca2+, as assessed by the sodium-sensitive dye, sodium-binding benzofuran isophthalate. These data, therefore, indicate that CaCo-2 cells do not express L-type, voltage-dependent Ca2+ channels. 1,25(OH)2D3 does appear to activate a La3+-inhibitable, cation influx pathway in CaCo-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号