首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
MicroRNAs (miRNAs) are single-stranded non-coding RNAs composed of 20-23 nucleotides. They are initially transcribed in the nucleus as pri-miRNAs. After processing, one strand from the miRNA duplex (miR-5p/miR-3p duplex) is loaded onto the RNA-induced silencing complex (RISC) to produce a functional, mature miRNA that inhibits the expression of multiple target genes. In the case of some miRNAs, both strands can be equally incorporated into the RISC as single strands, and both strands can function as mature miRNAs. Thus, a technique for selective expression of miR-5p and miR-3p strands is required to identify distinct targets of miRNAs. In this Letter, we report the synthesis and properties of miRNA duplexes carrying biaryl units at the 5'-terminus of one strand. We found that incorporation of biaryl units at the 5'-terminus of one strand of miRNA duplexes induced strand specificity in these duplexes. Further, we succeeded in identifying endogenous mRNA targets for each strand of the duplex by using the biaryl-modified miRNA duplexes.  相似文献   

4.
5.
The miR-15/107 group of microRNA (miRNA) gene is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease and neurodegenerative disease, including Alzheimer's disease. Here we provide an overview of the following: (1) the evolution of miR-15/107 group member genes; (2) the expression levels of miRNAs in mammalian tissues; (3) evidence for overlapping gene-regulatory functions by different miRNAs; (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs; and (5) the roles played by these miRNAs in human diseases. Membership in this group is defined based on sequence similarity near the mature miRNAs' 5′ end: all include the sequence AGCAGC. Phylogeny of this group of miRNAs is incomplete; thus, a definitive taxonomic classification (e.g., designation as a “superfamily”) is currently not possible. While all vertebrates studied to date express miR-15a, miR-15b, miR-16, miR-103, and miR-107, mammals alone are known to express miR-195, miR-424, miR-497, miR-503, and miR-646. Multiple different miRNAs in the miR-15/107 group are expressed at moderate to high levels in human tissues. We present data on the expression of all known miR-15/107 group members in human cerebral cortical gray matter and white matter using new miRNA profiling microarrays. There is extensive overlap in the mRNAs targeted by miR-15/107 group members. We show new data from cultured H4 cancer cells that demonstrate similarities in mRNAs targeted by miR-16 and miR-103 and also support the importance of the mature miRNAs' 5′ seed region in mRNA target recognition. In conclusion, the miR-15/107 group of miRNA genes is a fascinating topic of study for evolutionary biologists, miRNA biochemists, and clinically oriented translational researchers alike.  相似文献   

6.
7.
microRNAs (miRNAs) are small non-coding RNAs that regulate mRNA stability and translation through the action of the RNAi-induced silencing complex (RISC). Our current understanding of miRNA function is inferred largely from studies of the effects of miRNAs on steady-state mRNA levels and from seed match conservation and context in putative targets. Here we have taken a more direct approach to these issues by comprehensively assessing the miRNAs and mRNAs that are physically associated with Argonaute 2 (Ago2), which is a core RISC component. We transfected HEK293T cells with epitope-tagged Ago2, immunopurified Ago2 together with any associated miRNAs and mRNAs, and quantitatively determined the levels of these RNAs by microarray analyses. We found that Ago2 immunopurified samples contained a representative repertoire of the cell's miRNAs and a select subset of the cell's total mRNAs. Transfection of the miRNAs miR-1 and miR-124 caused significant changes in the association of scores of mRNAs with Ago2. The mRNAs whose association with Ago2 increased upon miRNA expression were much more likely to contain specific miRNA seed matches and to have their overall mRNA levels decrease in response to the miRNA transfection than expected by chance. Hundreds of mRNAs were recruited to Ago2 by each miRNA via seed sequences in 3'-untranslated regions and coding sequences and a few mRNAs appear to be targeted via seed sequences in 5'-untranslated regions. Microarray analysis of Ago2 immunopurified samples provides a simple, direct method for experimentally identifying the targets of miRNAs and for elucidating roles of miRNAs in cellular regulation.  相似文献   

8.
Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development.  相似文献   

9.
10.
11.

Background

Identifying the endogenous RNA induced silencing complex(RISC)-associated RNAs is essential for understanding the cellular regulatory networks by miRNAs. Recently, isolation of RISC-associated mRNAs using antibody was reported, but their method needs a large amount of initial materials. We tried to improve the protocol and constructed an efficient and convenient system for analyzing miRNA and mRNA contents in RISC.

Findings

With our protocol, it is possible to clone both miRNAs and mRNAs from the endogenous RISC-associated RNAs immunoprecipitated from less than 107 cells, and we show the ability of our system to isolate the particular target mRNAs for a specific miRNA from the RISC-associated mRNAs using well-characterized miR-122 as an example. After introduction of miR-122 into HepG2 cells, we found several cDNA clones that have miR-122 target sequences. Four of these clones that were concentrated in RISC but decreased in total RNA fraction are expected to be miR-122 target candidates. Interestingly, we found substantial amounts of Alu-related sequences, including both free Alu RNA and Alu-embedded mRNA, which might be one of the general targets for miRNA, in the cDNA clones from the RISC-associated mRNAs.

Conclusion

Our method thus enables us to examine not only dynamic changes in miRNA and mRNA contents in RISC but also the relationship of miRNA and target mRNA. We believe that our method can contribute to understanding cellular regulatory networks by miRNAs.  相似文献   

12.
Conventional wisdom holds that only one of the two strands in a micro ribonucleic acid (miRNA) precursor duplex is selected as the active miRNA guide strand. The complementary miRNA passenger strand, however, is thought to be inactive. High levels of the oncogenic miRNA (oncomiR) guide strand called miR-17-5p is overexpressed in triple negative breast cancer (TNBC) and can inhibit ribosomal translation of tumor suppressor gene mRNAs, such as programmed cell death 4 (PDCD4) or phosphatase and tensin homolog (PTEN). We hypothesized that knocking down the oncogenic microRNA (oncomiR) miR-17-5p might restore the expression levels of PDCD4 and PTEN tumor suppressor proteins, illustrating a route to oligonucleotide therapy of TNBC. Contrary to conventional wisdom, antisense knockdown of oncomiR miR-17-5p guide strand reduced PDCD4 and PTEN proteins by 1.8±0.3 fold in human TNBC cells instead of raising them. Bioinformatics analysis and folding energy calculations revealed that mRNA targets of miR-17-5p guide strand, such as PDCD4 and PTEN, could also be regulated by miR-17-3p passenger strand. Due to high sequence homology between the antisense molecules and miR-17-3p passenger strand, as well as the excess binding sites for the passenger strand on the 3’UTR of PDCD4 and PTEN mRNAs, introducing a miR-17-3p DNA-LNA mimic to knock down miR-17-5p reduced PDCD4 and PTEN protein expression instead of raising them. Our results imply that therapeutic antisense sequences against miRNAs should be designed to target the miRNA strand with the greatest number of putative binding sites in the target mRNAs, while minimizing affinity for the minor strand.  相似文献   

13.
14.
MicroRNAs (miRNAs) are key players in gene regulation that target specific mRNAs for degradation or translational repression. Each miRNA is synthesized as a miRNA duplex comprising two strands (5p and 3p). However, only one of the two strands becomes active and is selectively incorporated into the RNA-induced silencing complex in a process known as miRNA strand selection. Recently, significant progress has been made in understanding the factors and processes involved in strand selection. Here, we explore the selection and functionality of the miRNA star strand (either 5p or 3p), which is generally present in the cell at low levels compared to its partner strand and, historically, has been thought to possess no biological activity. We also highlight the concepts of miRNA arm switching and miRNA isomerism. Finally, we offer insights into the impact of aberrant strand selection on immunity and cancer. Leading us through this journey is miR-155, a well-established regulator of immunity and cancer, and the increasing evidence that its 3p strand plays a role in these arenas. Interestingly, the miR-155-5p/-3p ratio appears to vary dependent on the timing of the immune response, and the 3p strand seems to play a regulatory role upon its partner 5p strand.  相似文献   

15.
16.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

17.
18.
19.
20.
MicroRNAs (miRNAs) bind to complementary sequences within the 3' untranslated region (UTR) of mRNAs from hundreds of target genes, leading either to mRNA degradation or suppression of translation. We found that a mutation in the seed region of miR-184 (MIR184) is responsible for familial severe keratoconus combined with early-onset anterior polar cataract by deep sequencing of a linkage region known to contain the mutation. The mutant form fails to compete with miR-205 (MIR205) for overlapping target sites on the 3' UTRs of INPPL1 and ITGB4. Although these target genes and miR-205 are expressed widely, the phenotype is restricted to the cornea and lens because of the very high expression of miR-184 in these tissues. Our finding highlights the tissue specificity of a gene network regulated by a miRNA. Awareness of the important function of miRNAs could aid identification of susceptibility genes and new therapeutic targets for treatment of both rare and common diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号