首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, few therapies are effective against castration-resistant prostate cancer. Increased activation of the androgen/androgen receptor (AR) signaling pathway is thought to promote castration-resistant prostate cancer. Herein, we report that peroxiredoxin (Prx) gene expression in castration-resistant prostate cancer and hydrogen peroxide-resistant cells was upregulated. Prx2 was overexpressed in castration-resistant prostate cancer at the mRNA and protein levels and was localized to the nucleus and cytoplasm. Overexpression of Prx2 increased AR transactivation, whereas Prx2 overexpression in the nucleus suppressed AR transactivation. These effects of Prx2 on AR activity were abolished by the introduction of function-disrupting mutations into Cys51 and Cys172. Silencing Prx2 reduced the expression of androgen-regulated genes and suppressed the growth of AR-expressing prostate cancer cells by inducing cell-cycle arrest at the G1 phase. Furthermore, Prx2 knockdown also suppressed cell growth in castration-resistant prostate cancer cells. These findings indicate that Prx2 is involved in the proliferation of AR-expressing prostate cancer cells by modulating AR activity. Designing therapeutics targeting Prx2 may offer a novel strategy for developing treatments for prostate cancer, including castration-resistant prostate cancer, which is dependent on AR signaling.  相似文献   

2.
3.
4.
5.
6.
Despite earlier detection and recent advances in surgery and radiation, prostate cancer is second only to lung cancer in male cancer deaths in the United States. Hormone therapy in the form of medical or surgical castration remains the mainstay of systemic treatment in prostate cancer. Over the last 15 years with the clinical use of prostate specific antigen (PSA), there has been a shift to using hormone therapy earlier in the disease course and for longer duration. Despite initial favorable response to hormone therapy, over a period of time these tumors will develop androgen‐independence that results in death. The androgen receptor (AR) is central to the initiation and growth of prostate cancer and to its response to hormone therapy. Analyses have shown that AR continues to be expressed in androgen‐independent tumors and AR signaling remains intact as demonstrated by the expression of the AR regulated gene, PSA. Androgen‐independent prostate cancers have demonstrated a variety of AR alterations that are either not found in hormone naïve tumors or found at lower frequency. These changes include AR amplification, AR point mutation, and changes in expression of AR co‐regulatory proteins. These AR changes result in a “super AR” that can respond to lower concentrations of androgens or to a wider variety of agonistic ligands. There is also mounting evidence that AR can be activated in a ligand independent fashion by compounds such as growth factors or cytokines working independently or in combination. These growth factors working through receptor tyrosine kinase pathways may promote AR activation and growth in low androgen environments. The clinical significance of these AR alterations in the development and progression of androgen‐independent prostate cancer remains to be determined. Understanding the changes in AR signaling in the evolution of androgen‐independent prostate cancer will be key to the development of more effective hormone therapy. © 2003 Wiley‐Liss, Inc.  相似文献   

7.
Endocrine therapy for advanced prostate cancer is based on androgen ablation or blockade of the androgen receptor (AR). AR action in prostate cancer has been investigated in a number of cell lines, their derivatives, and transgenic animals. AR expression is heterogenous in prostate cancer in vivo; it could be detected in most primary tumors and their metastases. However, some cells lack the AR because of epigenetic changes in the gene promoter. AR expression increases after chronic androgen ablation in vitro. In several xenografts, AR upregulation is the most consistent change identified during progression towards therapy resistance. In contrast, the AR pathway may be by-passed during chronic treatment with a nonsteroidal anti-androgen. AR sensitivity in prostate cancer increases as a result of activation of the Ras/mitogen-activated protein kinase pathway. One of the major difficulties in endocrine therapy for prostate cancer is acquisition of agonistic properties of AR antagonists observed in the presence of mutated AR. Enhancement of AR function by associated coactivator proteins has been extensively investigated. Cofactors SRC-1, RAC3, p300/CBP, TIF-2, and Tip60 are upregulated in advanced prostate cancer. Most studies on ligand-independent activation of the AR are focused on Her-2/neu and interleukin-6 (IL-6). On the basis of studies that showed overexpression and activation of the AR in advanced prostate cancer, it was suggested that novel therapies that reduce AR expression will provide a benefit to patients. There is experimental evidence showing that prostate tumor growth in vitro and in vivo is inhibited following administration of chemopreventive drugs or antisense oligonucleotides that downregulate AR mRNA and protein expression.  相似文献   

8.
Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16INK4A and p21CIP1, but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation.  相似文献   

9.
The androgen‐signaling pathway plays critical roles in normal prostate development, benign prostatic hyperplasia, established prostate cancer, and in prostate carcinogenesis. In this study, we report that trihydrophobin 1 (TH1) is a potent negative regulator to attenuate the androgen signal‐transduction cascade through promoting androgen receptor (AR) degradation. TH1 interacts with AR both in vitro and in vivo, decreases the stability of AR, and promotes AR ubiquitination in a ligand‐independent manner. TH1 also associates with AR at the active androgen‐responsive prostate‐specific antigen (PSA) promoter in the nucleus of LNCaP cells. Decrease of endogenous AR protein by TH1 interferes with androgen‐induced luciferase reporter expression and reduces endogenous PSA expression. Taken together, these results indicate that TH1 is a novel regulator to control the duration and magnitude of androgen signal transduction and might be directly involved in androgen‐related developmental, physiological, and pathological processes. J. Cell. Biochem. 109: 1013–1024, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.
雄激素受体共调节因子与雄激素非依赖性前列腺癌   总被引:1,自引:0,他引:1  
雄激素介导的雄激素受体(AR)信号途径对雄性胚胎的发育及雄激素依赖性靶组织的分化发育是必需的。异常的AR活性与前列腺癌由雄激素依赖转变为雄激素非依赖性密切相关。已证实AR共调节因子参与前列腺癌的发生和发展,并在雄激素非依赖性前列腺癌细胞的增殖中扮演着重要角色。它们的表达失衡,可导致AR转录活性的改变,促进晚期前列腺癌的进展。简要综述了AR共调节因子的类型和功能,及其与雄激素非依赖性前列腺癌的关系。  相似文献   

12.
Alpha-2-glycoprotein 1, zinc-binding (AZGP1), known as zinc-alpha-2-glycoprotein (ZAG), is a multifunctional secretory glycoprotein and relevant to cancer metastasis. Little is known regarding the underlying mechanisms of AZGP1 in prostate cancer (PCa). In the present study, we report that AZGP1 is an androgen-responsive gene, which is involved in AR-induced PCa cell proliferation and metastasis. In clinical specimens, the expression of AZGP1 in PCa tissues is markedly higher than that in adjacent normal tissues. In cultures, expression of AZGP1 is upregulated by the androgen-AR axis at both messenger RNA and protein levels. Furthermore, Chip-Seq assay identifies canonical androgen-responsive elements (AREs) at AZGP1 enhancer; and dual-luciferase reporter assays reveal that the AREs is highly responsive to androgen whereas mutations of the AREs abolish the reporter activity. In addition, AZGP1 promotes G1/S phase transition and cell cycle progress by increasing cyclin D1 levels in PCa cells. Functional studies demonstrate that knocking down endogenous AZGP1 expression in LNCaP and CWR22Rv1 cells largely weaken androgen/AR axis-induced cell migration and invasion. In vivo xenotransplantation tumor experiments also show that AZGP1 involves in androgen/AR axis-mediated PCa cell proliferation. Taken together, our study implicates for the first time that AZGP1 is an AR target gene and is involved in androgen/AR axis-mediated cell proliferation and metastasis in primary PCa.  相似文献   

13.
Recent reports have shown that the AR is the key determinant of the molecular changes required for driving prostate cancer cells from an androgen‐dependent to an androgen‐independent or androgen depletion‐independent (ADI) state. Several recent publications suggest that down‐regulation of AR expression should therefore be considered the principal strategy for the treatment of ADI prostate cancer. However, no valid data is available about how androgen‐dependent prostate cancer cells respond to apoptosis‐inducing drugs after knocking down AR expression and whether prostate cancer cells escape apoptosis after inhibition of AR expression. This review will focus on mechanisms of prostate cancer cell survival after inhibition of AR activity mediated either by androgen depletion or by targeting the expression of AR by siRNA. We have shown that knocking down AR expression by siRNA induced PI3K‐independent activation of Akt, which was mediated by calcium/calmodulin‐dependent kinase II (CaMKII). We also showed that the expression of CaMKII genes is under AR control: active AR in the presence of androgens inhibits CaMKII gene expression whereas inhibition of AR activity results in an elevated level of kinase activity and in enhanced expression of CaMKII genes. This in turn activates the anti‐apoptotic PI3K/Akt pathways. CaMKII also express anti‐apoptotic activity that is independent from the Akt pathway. This may therefore be an important mechanism by which prostate cancer cells escape apoptosis after androgen depletion or knocking down AR expression. In addition, we have found that there is another way to escape cell death after AR inhibition: DNA damaging agents cannot fully activate p53 in the absence of AR and as a result p53 down stream targets, for example, microRNA‐34, cannot be activated and induce apoptosis. This implies that there may be a need for re‐evaluation of the therapeutic approaches to human prostate cancer. J. Cell. Biochem. 106: 363–371, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
The androgen receptor (AR) promotes growth of prostate cancer cells by controlling the expression of target genes. This study showed that MRG domain binding protein (MRGBP) accelerated AR-mediated transactivation. We first showed that MRGBP promoted growth of AR-positive prostate cancer cells. MRGBP increased the expression of certain AR target genes, including KLK3 and TMPRSS2, and it associated with AR binding regions of these genes during androgen treatment. Furthermore, MRGBP interacted with MRG15 and TIP60 in prostate cancer cells. Androgen-stimulated AR enhanced histone H3K4me1 or H3K4me3 levels at AR binding regions. MRGBP was recruited to active gene regions through its binding with H3K4me1/3 by MRG15. Then, MRGBP promoted recruitment of TIP60 and acetylation of histone variant H2A.Z at the location of AR binding. Accordingly, AR occupancy of the AR binding regions was increased by MRGBP. Together, these results suggest that MRGBP promotes activation of AR-associated enhancer and promoter regions through an epigenetic mechanism.  相似文献   

15.
16.
17.
18.
19.
Prostate cancer (PCa) is the second leading cause of cancer-related death in males in the United States. Majority of prostate cancers are originally androgen-dependent and sensitive to androgen-deprivation therapy (ADT), however, most of them eventually relapse and progress into incurable castration-resistant prostate cancer (CRPC). Of note, the activity of androgen receptor (AR) is still required in CRPC stage. The mitotic kinase polo-like kinase 1 (Plk1) is significantly elevated in PCa and its expression correlates with tumor grade. In this study, we assess the effects of Plk1 on AR signaling in both androgen-dependent and androgen-independent PCa cells. We demonstrate that the expression level of Plk1 correlated with tumorigenicity and that inhibition of Plk1 caused reduction of AR expression and AR activity. Furthermore, Plk1 inhibitor BI2536 down-regulated SREBP-dependent expression of enzymes involved in androgen biosynthesis. Of interest, Plk1 level was also reduced when AR activity was inhibited by the antagonist MDV3100. Finally, we show that BI2536 treatment significantly inhibited tumor growth in LNCaP CRPC xenografts. Overall, our data support the concept that Plk1 inhibitor such as BI2536 prevents AR signaling pathway and might have therapeutic potential for CRPC patients.  相似文献   

20.
Molecular regulation of androgen action in prostate cancer   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号