首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered a promising agent for medical applications because it induces apoptosis selectively in a variety of cancer cells without toxicity to normal human cells. However, its therapeutic potential has been limited by the existence of several cancer cells with TRAIL resistance. TRAIL resistance results from a variety of mechanisms, which occur at various points in the cellular signaling pathways. In this study, we demonstrate that ALS2CR7 (CDK15) can mediate resistance to TRAIL. We also demonstrate that cell viability of TRAIL sensitive HCT116 and MDA-MB-231 cells increased after TRAIL treatment in ALS2CR7 transfected cancer cells compared with vector transfected cancer cells. Furthermore, cell viability was decreased by TRAIL treatment after knockdown with ALS2CR7 siRNA in TRAIL resistant HT29 and MCF-7 cells. We also show that the activated form of apoptotic proteins such as caspase-3, -8 and -9 and PARP increased after TRAIL treatment in the control group, but decreased in the ALS2CR7 transfected group. The expression of survival proteins such as bcl2 and survivin in TRAIL sensitive cancer cells increased in the ALS2CR7 transfected group, but decreased in TRAIL resistant cancer cells treated with ALS2CR7 siRNA. Other survival proteins such as FLIP and XIAP were not affected. ALS2CR7 appears to bind with only survivin, and not bcl2. The phospho-survivin (Thr34) critical in drug resistance was increased by transfection with ALS2CR7, but the expression of death receptors such as DR4 and DR5 was not affected. ALS2CR7 did not bind with any of the death receptors in our study. In summary, our results suggest that ALS2CR7 confers TRAIL resistance to cancer cells via phosphorylation of survivin.  相似文献   

2.
Although resveratrol, an active ingredient derived from grapes and red wine, possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. Here, we examined the molecular mechanisms of resveratrol and its interactive effects with TRAIL on apoptosis in prostate cancer PC-3 and DU-145 cells. Resveratrol inhibited cell viability and colony formation, and induced apoptosis in prostate cancer cells. Resveratrol downregulated the expression of Bcl-2, Bcl-XL and survivin and upregulated the expression of Bax, Bak, PUMA, Noxa, and Bim, and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). Treatment of prostate cancer cells with resveratrol resulted in generation of reactive oxygen species (ROS), translocation of Bax to mitochondria and subsequent drop in mitochondrial membrane potential, release of mitochondrial proteins (cytochrome c, Smac/DIABLO, and AIF) to cytosol, activation of effector caspase-3 and caspase-9, and induction of apoptosis. Resveratrol-induced ROS production, caspase-3 activity and apoptosis were inhibited by N-acetylcysteine. Bax was a major proapoptotic gene mediating the effects of resveratrol as Bax siRNA inhibited resveratrol-induced apoptosis. Resveratrol enhanced the apoptosis-inducing potential of TRAIL, and these effects were inhibited by either dominant negative FADD or caspase-8 siRNA. The combination of resveratrol and TRAIL enhanced the mitochondrial dysfunctions during apoptosis. These properties of resveratrol strongly suggest that it could be used either alone or in combination with TRAIL for the prevention and/or treatment of prostate cancer.  相似文献   

3.
The discovery of the molecular targets of chemotherapeutic medicines and their chemical footprints can validate and improve the use of such medicines. In the present report, we investigated the effect of mitomycin C (MMC), a classical chemotherapeutic agent on cancer cell apoptosis induced by TRAIL. We found that MMC not only potentiated TRAIL-induced apoptosis in HCT116 (p53−/−) colon cancer cells but also sensitized TRAIL-resistant colon cancer cells HT-29 to the cytokine both in vitro and in vivo. MMC also augmented the pro-apoptotic effects of two TRAIL receptor agonist antibodies, mapatumumab and lexatumumab. At a mechanistic level, MMC downregulated cell survival proteins, including Bcl2, Mcl-1 and Bcl-XL, and upregulated pro-apoptotic proteins including Bax, Bim and the cell surface expression of TRAIL death receptors DR4 and DR5. Gene silencing of DR5 by short hairpin RNA reduced the apoptosis induced by combination treatment of MMC and TRAIL. Induction of DR4 and DR5 was independent of p53, Bax and Bim but was dependent on c-Jun N terminal kinase (JNK) as JNK pharmacological inhibition and siRNA abolished the induction of the TRAIL receptors by MMC.  相似文献   

4.
The discovery of the molecular targets of chemotherapeutic medicines and their chemical footprints can validate and improve the use of such medicines. In the present report, we investigated the effect of mitomycin C (MMC), a classical chemotherapeutic agent on cancer cell apoptosis induced by TRAIL. We found that MMC not only potentiated TRAIL-induced apoptosis in HCT116 (p53?/?) colon cancer cells but also sensitized TRAIL-resistant colon cancer cells HT-29 to the cytokine both in vitro and in vivo. MMC also augmented the pro-apoptotic effects of two TRAIL receptor agonist antibodies, mapatumumab and lexatumumab. At a mechanistic level, MMC downregulated cell survival proteins, including Bcl2, Mcl-1 and Bcl-XL, and upregulated pro-apoptotic proteins including Bax, Bim and the cell surface expression of TRAIL death receptors DR4 and DR5. Gene silencing of DR5 by short hairpin RNA reduced the apoptosis induced by combination treatment of MMC and TRAIL. Induction of DR4 and DR5 was independent of p53, Bax and Bim but was dependent on c-Jun N terminal kinase (JNK) as JNK pharmacological inhibition and siRNA abolished the induction of the TRAIL receptors by MMC.  相似文献   

5.
Development of resistance to TRAIL, an apoptosis-inducing cytokine, is one of the major problems in its development for cancer treatment. Thus, pharmacological agents that are safe and can sensitize the tumor cells to TRAIL are urgently needed. We investigated whether gossypol, a BH3 mimetic that is currently in the clinic, can potentiate TRAIL-induced apoptosis. Intracellular esterase activity, sub-G1 cell cycle arrest, and caspase-8, -9, and -3 activity assays revealed that gossypol potentiated TRAIL-induced apoptosis in human colon cancer cells. Gossypol also down-regulated cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, and cFLIP) and dramatically up-regulated TRAIL death receptor (DR)-5 expression but had no effect on DR4 and decoy receptors. Gossypol-induced receptor induction was not cell type-specific, as DR5 induction was observed in other cell types. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by TRAIL and gossypol. Gossypol induction of the death receptor required the induction of CHOP, and thus, gene silencing of CHOP abolished gossypol-induced DR5 expression and associated potentiation of apoptosis. ERK1/2 (but not p38 MAPK or JNK) activation was also required for gossypol-induced TRAIL receptor induction; gene silencing of ERK abolished both DR5 induction and potentiation of apoptosis by TRAIL. We also found that reactive oxygen species produced by gossypol treatment was critical for TRAIL receptor induction and apoptosis potentiation. Overall, our results show that gossypol enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and the up-regulation of TRAIL death receptors through the ROS-ERK-CHOP-DR5 pathway.  相似文献   

6.
TNF-alpha-related-apoptosis-inducing-ligand (TRAIL) has been explored as a therapeutic drug to kill cancer cells. Cancer cells in the circulation are subjected to apoptosis-inducing factors. Despite the presence of these factors, cells are able to extravasate and metastasize. The homotypic and heterotypic cell-cell interactions in a tumor are known to play a crucial role in bestowing important characteristics to cancer cells that leave the primary site. Spheroid cell culture has been extensively used to mimic these physiologically relevant interactions. In this work, we show that the breast cancer cell lines BT20 and MCF7, cultured as 3D tumor spheroids, are more resistant to TRAIL-mediated apoptosis by downregulating the expression of death receptors (DR4 and DR5) that initiate TRAIL-mediated apoptosis. For comparison, we also investigated the effect of TRAIL on cells cultured as a 2D monolayer. Our results indicate that tumor spheroids are enriched for CD44hiCD24loALDH1hi cells, a phenotype that is predominantly known to be a marker for breast cancer stem cells. Furthermore, we attribute the TRAIL-resistance and cancer stem cell phenotype observed in tumor spheroids to the upregulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway. We show that inhibition of the COX-2/PGE2 pathway by treating tumor spheroids with NS-398, a selective COX-2 inhibitor, reverses the TRAIL-resistance and decreases the incidence of a CD44hiCD24lo population. Additionally, we show that siRNA mediated knockdown of COX-2 expression in MCF7 cells render them sensitive to TRAIL by increasing the expression of DR4 and DR5. Collectively, our results show the effect of the third-dimension on the response of breast cancer cells to TRAIL and suggest a therapeutic target to overcome TRAIL-resistance.  相似文献   

7.
The focus of this study is the anti-cancer effects of Cudrania tricuspidata stem (CTS) extract on cervical cancer cells. The effect of CTS on cell viability was investigated in HPV-positive cervical cancer cells and HaCaT human normal keratinocytes. CTS showed significant dose-dependent cytotoxic effects in cervical cancer cells. However, there was no cytotoxic effect of CTS on HaCaT keratinocytes at concentrations of 0.125–0.5 mg/mL. Based on this cytotoxic effect, we demonstrated that CTS induced apoptosis by down-regulating the E6 and E7 viral oncogenes. Apoptosis was detected by DAPI staining, annexin V-FITC/PI staining, cell cycle analysis, western blotting, RT-PCR, and JC-1 staining in SiHa cervical cancer cells. The mRNA expression levels of extrinsic pathway molecules such as Fas, death receptor 5 (DR5), and TNF-related apoptosis-inducing ligand (TRAIL) were increased by CTS. Furthermore, CTS treatment activated caspase-3/caspase-8 and cleavage of poly (ADP-ribose) polymerase (PARP). However, the mitochondrial membrane potential and expression levels of intrinsic pathway molecules such as Bcl-2, Bcl-xL, Bax, and cytochrome C were not modulated by CTS. Taken together, these results indicate that CTS induced apoptosis by activating the extrinsic pathway, but not the intrinsic pathway, in SiHa cervical cancer cells. These results suggest that CTS can be used as a modulating agent in cervical cancer.  相似文献   

8.
The tumour necrosis factor family member TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in a variety of cancer cells through the activation of death receptors 4 (DR4) and 5 (DR5) and is considered a promising anticancer therapeutic agent. As apoptosis seems to occur primarily via only one of the two death receptors in many cancer cells, the introduction of DR selectivity is thought to create more potent TRAIL agonists with superior therapeutic properties. By use of a computer-aided structure-based design followed by rational combination of mutations, we obtained variants that signal exclusively via DR4. Besides an enhanced selectivity, these TRAIL-DR4 agonists show superior affinity to DR4, and a high apoptosis-inducing activity against several TRAIL-sensitive and -resistant cancer cell lines in vitro. Intriguingly, combined treatment of the DR4-selective variant and a DR5-selective TRAIL variant in cancer cell lines signalling by both death receptors leads to a significant increase in activity when compared with wild-type rhTRAIL or each single rhTRAIL variant. Our results suggest that TRAIL induced apoptosis via high-affinity and rapid-selective homotrimerization of each DR represent an important step towards an efficient cancer treatment.  相似文献   

9.
Our study aimed to compare death signalling pathways triggered by lupulone in TRAIL-sensitive human colon cancer cells (SW480) and in their derived TRAIL-resistant metastatic cells (SW620). Lupulone (40 μg/ml) up-regulated expression of TRAIL DR4/DR5 death receptors at the cell surface of both cell lines, even in the absence of exogenous TRAIL ligand. Cell death induced by lupulone was inhibited in SW480 and SW620 cells exposed to blocking anti-DR4/DR5 antibodies. In SW480 cells, lupulone triggered cell death through a cross-talk between TRAIL-DR4/DR5 and the mitochondrial (intrinsic) pathways involving caspase-8 activation and Bid protein cleavage. As a consequence mitochondrial cytochrome c was released into the cytosol and activation of caspases-9 and -3 was observed. In the metastatic SW620 cells, lupulone restored the sensibility of these cells to TRAIL ligand and activated the extrinsic apoptotic pathway via DR4/DR5 death receptors and the involvement of the caspase-8/caspase-3 cascade. The demonstration that lupulone is able to activate TRAIL-death signalling pathways even in TRAIL resistant cancer cells highlights the potential of this natural compound for cancer prevention and therapy.  相似文献   

10.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) acts as an apoptosis inducer for cancer cells sparing non-tumor cell targets. However, several phase I/II clinical trials have shown limited benefits of this molecule. In the present work, we investigated whether cell susceptibility to TRAIL ligation could be due to the presence of TRAIL death receptors (DRs) 4 and 5 in membrane microdomains called lipid rafts. We performed a series of analyses, either by biochemical methods or fluorescence resonance energy transfer (FRET) technique, on normal cells (i.e. lymphocytes, fibroblasts, endothelial cells), on a panel of human cancer B-cell lines as well as on CD19+ lymphocytes from patients with B-chronic lymphocytic leukemia, treated with different TRAIL ligands, that is, recombinant soluble TRAIL, specific agonistic antibodies to DR4 and DR5, or CD34+ TRAIL-armed cells. Irrespective to the expression levels of DRs, a molecular interaction between ganglioside GM3, abundant in lymphoid cells, and DR4 was detected. This association was negligible in all non-transformed cells and was strictly related to TRAIL susceptibility of cancer cells. Interestingly, lipid raft disruptor methyl-beta-cyclodextrin abrogated this susceptibility, whereas the chemotherapic drug perifosine, which induced the recruitment of TRAIL into lipid microdomains, improved TRAIL-induced apoptosis. Accordingly, in ex vivo samples from patients with B-chronic lymphocytic leukemia, the constitutive embedding of DR4 in lipid microdomains was associated per se with cell death susceptibility, whereas its exclusion was associated with TRAIL resistance. These results provide a key mechanism for TRAIL sensitivity in B-cell malignances: the association, within lipid microdomains, of DR4 but not DR5, with a specific ganglioside, that is the monosialoganglioside GM3. On these bases we suggest that lipid microdomains could exert a catalytic role for DR4-mediated cell death and that an ex vivo quantitative FRET analysis could be predictive of cancer cell sensitivity to TRAIL.  相似文献   

11.
TRAIL has been demonstrated to play a critical role in the apoptosis of colorectal cancer (CRC) cells, but drug resistance markedly restricts its therapeutic effects. Objectives: This study aims to investigate whether encorafenib can enhance TRAIL-induced apoptosis of colorectal cancer cells and the underlying mechanism. TRAIL was first used to induce CRC cells. CCK-8 assays were conducted for detecting cell viability of TRAIL-induced CRC cells with encorafenib treatment. Flow cytometry was used to detect the cell apoptosis of CRC cells and western blot was used to measure the expressions of apoptosis-related proteins. The expressions of DR4, DR5, p53, and PUMA were then evaluated by qPCR and western blot. After transfecting the interference plasmid of p53 into CRC cells, the expressions of PUMA and DR5 were further explored. TRAIL reduced the cell viability of CRC cells, and the inhibition was further reinforced under co-treatment of TRAIL and encorafenib. Encorafenib also triggered the promotion of CRC cell apoptosis induced by TRAIL. It was also found that encorafenib exerted its promoting effects on cell apoptosis of CRC cells via the elevation of DR5. Besides, encorafenib administration promoted the expression levels of p53 and PUMA in TRAIL-induced CRC cells. Furthermore, p53 knockdown attenuated the expression of PUMA and DR5 in TRAIL-induced CRC cells treated with encorafenib. This study indicates that encorafenib stimulates TRAIL-induced apoptosis of CRC cells dependent on p53/PUMA signaling, which may provide instructions for the treatment of CRC.  相似文献   

12.
Apoptosis-inducing ligand 2 (Apo2L), also called tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), triggers programmed cell death in various types of cancer cells but not in most normal cells. Apo2L/TRAIL is a homotrimeric protein that interacts with five receptors: death receptor 4 (DR4) and DR5 mediate apoptosis activation, whereas decoy receptor 1 (DcR1), DcR2, and osteoprotegerin counteract this function. Many cancer cell lines express both DR4 and DR5, and each of these receptors can initiate apoptosis independently of the other. However, the relative contribution of DR4 and DR5 to ligand-induced apoptosis is unknown. To investigate this question, we generated death receptor-selective Apo2L/TRAIL variants using a novel approach that enables phage display of mutated trimeric proteins. Selective binding to DR4 or DR5 was achieved with three to six-ligand amino acid substitutions. The DR4-selective Apo2L/TRAIL variants examined in this study showed a markedly reduced ability to trigger apoptosis, whereas the DR5-selective variants had minimally decreased or slightly increased apoptosis-inducing activity. These results suggest that DR5 may contribute more than DR4 to Apo2L/TRAIL-induced apoptosis in cancer cells that express both death receptors.  相似文献   

13.
TRAIL (TNF-related apoptosis-inducing ligand) death receptors DR4 and DR5 facilitate the selective elimination of malignant cells through the induction of apoptosis. From previous studies the regulation of the DR4 and DR5 cell-death pathways appeared similar; nevertheless in this study we screened a library of small interfering RNA (siRNA) for genes, which when silenced, differentially affect DR4- vs. DR5-mediated apoptosis. These experiments revealed that expression of the signal recognition particle (SRP) complex is essential for apoptosis mediated by DR4, but not DR5. Selective diminution of SRP subunits by RNA interference resulted in a dramatic decrease in cell surface DR4 receptors that correlated with inhibition of DR4-dependent cell death. Conversely, SRP silencing had little influence on cell surface DR5 levels or DR5-mediated apoptosis. Although loss of SRP function in bacteria, yeast and protozoan parasites causes lethality or severe growth defects, we observed no overt phenotypes in the human cancer cells studied--even in stable cell lines with diminished expression of SRP components. The lack of severe phenotype after SRP depletion allowed us to delineate, for the first time, a mechanism for the differential regulation of the TRAIL death receptors DR4 and DR5--implicating the SRP complex as an essential component of the DR4 cell-death pathway.  相似文献   

14.
The simultaneous expression of human papillomavirus type 16 (HPV16) E6 and E7 oncogenes is pivotal for malignant transformation and maintenance of malignant phenotypes. Silencing these oncogenes is considered to be applicable in molecular therapies of human cervical cancer. However, it remains to be determined whether HPV16 E6 and E7 could be both silenced to obtain most efficient antitumor activity by using RNA interference (RNAi) technology. Herein, we designed a small interfering RNA (siRNA) targeting HPV16-E7 region to degrade either E6, or truncated E6 (E6*) and E7 mRNAs and to simultaneously knockdown both E6 and E7 expression. Firstly, the sequence targeting HPV16-E7 region was inserted into the shRNA packing vector pSIREN-DNR, yielding pSIREN-16E7 to stably express corresponding shRNA. HPV16-transformed SiHa and CaSki cells were used as a model system; RT-PCR, Western Blotting, MTT assay, TUNEL staining, Annexin V apoptosis assay and flow cytometry were applied to examine the effects of pSIREN-16E7. Our results indicated that HPV16-E7 specific shRNA (16E7-shRNA) induced selective degradation of E6 and E7 mRNAs and proteins. E6 silencing induced accumulation of cellular p53 and p21. In contrast, E7 silencing induced hypophosphorylation of retinoblastoma (Rb) protein. The loss of E6 and E7 reduced cell growth and ultimately resulted in massive apoptotic cell death selectively in HPV-positive cancer cells, compared with the HPV-negative ones. We demonstrated that 16E7-shRNA can induce simultaneous E6 and E7 suppression and lead to striking apoptosis in HPV16-related cancer cells by activating cellular p53, p21 and Rb. Therefore, RNAi using E7 shRNA may have the gene-specific therapy potential for HPV16-related cancers.  相似文献   

15.
16.
17.
Barblu L  Herbeuval JP 《PloS one》2012,7(3):e32874
Activation-induced cell death is a natural process that prevents tissue damages from over-activated immune cells. TNF-Related apoptosis ligand (TRAIL), a TNF family member, induces apoptosis of infected and tumor cells by binding to one of its two death receptors, DR4 or DR5. TRAIL was reported to be secreted by phytohemagglutinin (PHA)-stimulated CD4(+) T cells in microvesicles.We investigate here TRAIL and DR5 regulation by activated primary CD4(+) T cells and its consequence on cell death. We observed that PHA induced CD4(+) T cell apoptosis in a dose-dependent manner. Thus, we investigated molecules involved in PHA-mediated cell death and demonstrated that TRAIL and DR5 were over-expressed on the plasma membrane of PHA-stimulated CD4(+) T cells. Surprisingly, DR5 was constitutively expressed in naive CD4(+) T cells at messenger RNA (mRNA) and protein levels. Thus, using 3 dimensional microscopy and intracellular staining assays, we show that DR5 is constitutively expressed in CD4(+) T cells and is pre-stocked in the cytoplasm. When cells are stimulated by PHA, DR5 is relocalized from cytoplasm to plasma membrane. Small interference RNA (siRNA) and blocking antibody assays demonstrate that TRAIL/DR5 interaction is mainly responsible for PHA-mediated CD4(+) T cell apoptosis. Thus, membrane DR5 expression leading to TRAIL-mediated apoptosis may represent one of the pathways responsible for eradication of over-activated CD4(+) T cells during immune responses.  相似文献   

18.
Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is currently under clinical trials for cancer, however many tumor cells, including hepatocellular carcinoma (HCC) develop resistance to TRAIL-induced apoptosis. Hence, novel agents that can alleviate TRAIL-induced resistance are urgently needed. In the present report, we investigated the potential of emodin to enhance apoptosis induced by TRAIL in HCC cells. As observed by MTT cytotoxicity assay and the externalization of the membrane phospholipid phosphatidylserine, we found that emodin can significantly potentiate TRAIL-induced apoptosis in HCC cells. When investigated for the mechanism(s), we observed that emodin can downregulate the expression of various cell survival proteins, and induce the cell surface expression of both TRAIL receptors, death receptors (DR) 4 as well as 5. In addition, emodin increased the expression of C/EBP homologous protein (CHOP) in a time-dependent manner. Knockdown of CHOP by siRNA decreased the induction of emodin-induced DR5 expression and apoptosis. Emodin-induced induction of DR5 was mediated through the generation of reactive oxygen species (ROS), as N-acetylcysteine blocked the induction of DR5 and the induction of apoptosis. Also, the knockdown of X-linked inhibitor of apoptosis protein by siRNA significantly reduced the sensitization effect of emodin on TRAIL-induced apoptosis. Overall, our experimental results clearly indicate that emodin can indeed potentiate TRAIL-induced apoptosis through the downregulation of antiapoptotic proteins, increased expression of apoptotic proteins, and ROS mediated upregulation of DR in HCC cells.  相似文献   

19.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising candidates for cancer therapeutics. However, some tumor cells are resistant to TRAIL-induced apoptosis. Our previous studies have shown that luteolin, a naturally occurring flavonoid, induces the up-regulation of death receptor 5 (DR5), which is a receptor for TRAIL. Here, we show for the first time that luteolin synergistically acts with exogenous soluble recombinant human TRAIL to induce apoptosis in HeLa cells, but not in normal human peripheral blood mononuclear cells. The combined use of luteolin and TRAIL induced Bid cleavage and the activation of caspase-8. Also, human recombinant DR5/Fc chimera protein, caspase inhibitors, and DR5 siRNA efficiently reduced apoptosis induced by co-treatment with luteolin and TRAIL. These results raise the possibility that this combined treatment with luteolin and TRAIL might be promising as a new therapy against cancer.  相似文献   

20.
On the TRAIL to apoptosis   总被引:12,自引:0,他引:12  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号