首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Sun W  Wen YY  Wu GY 《生理学报》1998,50(1):82-86
本文比较了正常和高血压大鼠不同动脉血管肌球蛋白轻链激酶(MLCK)和依赖Ca^2+的钙调素磷酸酶(Ca^2+/CaM-PP)活性的变化。结果表明:在自发性高血压大鼠(SHR)不同血管MLCK的活性不同,依次为主动脉(A)〉尾动脉(CA)〉肠系膜动脉(MA);而在WKY大鼠,该酶在不同血管的活性依次为A〈〈CA〈〈AM。在WKY大鼠,MA Ca^2+/CaM-PP活性明显高于SHR。在肾性高血压大鼠  相似文献   

3.
To understand the regulation of vasopressin (AVP) receptors in spontaneous hypertension, we investigated the pressor response of AVP in the perfused mesenteric vasculature, AVP binding sites in the membrane preparation of the same vascular bed, and the production of inositol trisphosphate (InsP3) stimulated by AVP in the aorta of spontaneously hypertensive rats (SHR), Wistar-Kyoto rats (WKY), and Wistar rats (WR) at different ages (4-16 weeks). Plasma AVP concentrations were similar in SHR, WKY, and WR at all ages. The density of AVP vascular binding sites was significantly higher in WKY than in SHR and WR at 12 weeks. Receptor affinity was similar in all strains. The pressor response of the mesenteric vasculature to AVP was similar in the three strains of rats at 4 weeks (prehypertensive stage) and increased progressively in SHR compared with WKY and WR at 8 and 12 weeks of age by 43 and 35%, respectively, and by more than 80% at 16 weeks of age (established hypertensive stage). There was no difference in vascular sensitivity to AVP. A significantly increased pressor response to a supramaximal dose of norepinephrine was also found at 16 weeks in SHR, but not in younger rats. InsP3 production in the aorta in response to AVP was increased in SHR at 8, 12, and 16 weeks, compared with WKY and WR. These results suggest that the vascular response to AVP is increased in SHR, in spite of decreased or normal density of binding sites compared with WKY or WR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The Na+-K+-2Cl cotransporter 1 (NKCC1) is one of several transporters that have been implicated for development of hypertension since NKCC1 activity is elevated in hypertensive aorta and vascular contractions are inhibited by bumetanide, an inhibitor of NKCC1. We hypothesized that promoter hypomethylation upregulates the NKCC1 in spontaneously hypertensive rats (SHR). Thoracic aortae and mesenteric arteries were excised, cut into rings, mounted in organ baths and subjected to vascular contraction. The expression levels of nkcc1 mRNA and protein in aortae and heart tissues were measured by real-time PCR and Western blot, respectively. The methylation status of nkcc1 promoter region was analyzed by combined bisulfite restriction assay (COBRA) and bisulfite sequencing. Phenylephrine-induced vascular contraction in a dose-dependent manner, which was inhibited by bumetanide. The inhibition of dose-response curves by bumetanide was much greater in SHR than in Wistar Kyoto (WKY) normotensive rats. The expression levels of nkcc1 mRNA and of NKCC1 protein in aortae and heart tissues were higher in SHR than in WKY. Nkcc1 gene promoter was hypomethylated in aortae and heart than those of WKY. These results suggest that promoter hypomethylation upregulates the NKCC1 expression in aortae and heart of SHR.  相似文献   

5.

Objectives

Spontaneously hypertensive rats (SHR) have been used frequently as a model for human essential hypertension. However, both the SHR and its normotensive control, the Wistar Kyoto rat (WKY), consist of genetically different sublines. We tested the hypothesis that the pathophysiology of vascular remodeling in hypertension differs among rat sublines.

Methods and Results

We studied mesenteric resistance arteries of WKY and SHR from three different sources, at 6 weeks and 5 months of age. Sublines of WKY and SHR showed differences in blood pressure, body weight, vascular remodeling, endothelial function, and vessel ultrastructure. Common features in small mesenteric arteries from SHR were an increase in wall thickness, wall-to-lumen ratio, and internal elastic lamina thickness.

Conclusions

Endothelial dysfunction, vascular stiffening, and inward remodeling of small mesenteric arteries are not common features of hypertension, but are subline-dependent. Differences in genetic background associate with different types of vascular remodeling in hypertensive rats.  相似文献   

6.
Graded contractions to cumulative additions of calcium in the presence of KCl were obtained in strips of aorta and mesenteric arteries of normotensive (WKY) and spontaneously hypertensive (SHR) rats. In calcium-free medium, a maximally effective concentration of KCl produced a response that was larger in the mesenteric arteries (43-51% of control) than in the aorta (12-14% of control). The calcium channel blocker nifedipine (NFD, up to 10(-7) M) did not significantly alter these calcium-insensitive responses. The Ca2+-induced responses were inhibited by NFD, in a concentration-dependent fashion, in both vessel types of WKY and SHR rats. The aortic responses were more sensitive to inhibition by NFD than the responses of mesenteric arteries. Moreover, the aortic responses of WKY were inhibited to a greater extent than those of the SHR. The results suggest: (a) a differential calcium dependence of contractions to KCl in the vessels studied; (b) that aortic responses are dependent on NFD-sensitive voltage-sensitive Ca2+ channels to a greater extent than the responses of mesenteric arteries; and (c) that hypertension results in a decreased sensitivity of the aorta Ca2+ channels to NFD.  相似文献   

7.
8.
This study was conducted to determine if increased vascular contractile sensitivity to serotonin in spontaneously hypertensive (SHR) rats is linked with increased phosphoinositide turnover. Aortic and mesenteric artery rings from SHR exhibited 6.2- and 5.0-fold greater contractile sensitivity to serotonin than the aortic and mesenteric artery rings from normotensive Wistar-Kyoto (WKY) rats. Serotonin-induced turnover of phosphoinositide was measured by quantifying the accumulation of [3H] inositol labeled inositol monophosphate (IP), inositol bisphosphate (IP2) and inositol trisphosphate (IP3). Serotonin (3, 30, 200 microM) induced significantly greater accumulation of IP in SHR (279%, 590%, 895%) than in WKY (24%, 127%, 328%) aortic rings. Similarly, 3, 30 and 200 microM serotonin induced significantly greater accumulation of IP2 (118%, 241%, 451%) and IP3 (90%, 100%, 247%) in SHR than the accumulation of IP2 (15%, 58%, 122%) and IP3 (19%, 27%, 73%) in WKY aortic rings. Based on these data it is suggested that the greater vascular sensitivity to serotonin in SHR, at least in part, is attributable to increased turnover of phosphoinositide.  相似文献   

9.
Treatment with pertussis toxin (PTX) which eliminates the activity of G(i) proteins effectively reduces blood pressure (BP) and vascular resistance in spontaneously hypertensive rats (SHR). In this study we have compared the functional characteristics of isolated arteries from SHR with and without PTX-treatment (10 microg/kg i.v., 48 h before the experiment). Rings of thoracic aorta, superior mesenteric artery and main pulmonary artery were studied under isometric conditions to measure the reactivity of these vessels to receptor agonists and to transmural electrical stimuli. We have found that the treatment of SHR with PTX had no effect on endothelium-dependent relaxation of thoracic aorta induced by acetylcholine. In PTX-treated SHR, the maximum contraction of mesenteric artery to exogenous noradrenaline was reduced and the dose-response curve to cumulative concentration of noradrenaline was shifted to the right. Similarly, a reduction in the magnitude of neurogenic contractions elicited by electrical stimulation of perivascular nerves was observed in the mesenteric artery from PTX-treated SHR. PTX treatment of SHR also abolished the potentiating effect of angiotensin II on neurogenic contractions of the main pulmonary artery. These results indicate that PTX treatment markedly diminishes the effectiveness of adrenergic stimuli in vasculature of SHR. This could importantly affect BP regulation in genetic hypertension.  相似文献   

10.
The density of catecholamine-containing nerve fibers was studied in the cerebral and mesenteric arteries from normotensive Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), and stroke-prone SHR (SHRSP) in the growing (SHR, WKY) and adult (SHR, SHRSP, WKY) animals. Cerebral arteries from SHR showed an increased adrenergic innervation from day 1. The nerve plexuses reached an adult pattern earlier in SHR than in WKY. The arteries from adult SHR and SHRSP (22 weeks old) showed a markedly higher nerve density than WKY. There was a positive linear correlation between blood pressure and nerve density for four cerebral arteries. The mesenteric arteries were not innervated at birth. However, hyperinnervation of these arteries in the SHR was already present at 10 days of age as compared with WKY. Sympathectomy with anti-nerve growth factor and guanethidine caused a complete disappearance of fluorescent fibers in the mesenteric arteries from SHR and WKY, and in the cerebral arteries of WKY. The same procedure caused only partial denervation of the cerebral arteries from hypertensive animals. We postulate that the increase in nerve density in the cerebral arteries from the hypertensive rats may contribute to the development of arterial hypertrophy in chronic hypertension through the trophic effect of the sympathetic innervation on vascular structure.  相似文献   

11.
Arteries undergo remodeling as a consequence of increased wall stress during hypertension. However, the molecular mechanisms of the vascular remodeling are largely unknown. Proteomics is a powerful tool to screen for differentially expressed proteins, but little effort was made on vascular disease research, especially on hypertension. In the present study, the differentially expressed proteins in aortas from 18-week-old spontaneously hypertensive rats (SHR) and their normotensive counterpart, Wistar Kyoto rats (WKY), were examined by two-dimensional electrophoresis (2-DE). We found 50 proteins to be differentially expressed, among which 27 were highly or only expressed in SHR and 23 in WKY. Using matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF-MS) and online data search, nine proteins, including Rho GDP dissociation inhibitor alpha (RhoGDIalpha), were identified with high confidence. Further, the upregulation of RhoGDIalpha was verified at both mRNA and protein level in SHR. In addition, when cultured vascular smooth muscle cells (VSMCs) from aortas of SHR and WKY were treated with angiotensin II (Ang II) and antagonist of angiotensin II type I (AT(1)) receptor, L158809, respectively, RhoGDIalpha was upregulated by Ang II and downregulated by L158809 in VSMCs of SHR. These results demonstrate that vascular remodeling results in significant alterations in the protein expression profile of the aorta during hypertension and suggest that the upregulation of RhoGDIalpha in hypertension is induced by Ang II via AT(1) receptor.  相似文献   

12.

Uridine 5′-triphosphate (UTP) has an important role as an extracellular signaling molecule that regulates inflammation, angiogenesis, and vascular tone. While chronic hypertension has been shown to promote alterations in arterial vascular tone regulation, carotid artery responses to UTP under hypertensive conditions have remained unclear. The present study investigated carotid artery responses to UTP in spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats (WKY). Accordingly, our results found that although UTP promotes concentration-dependent relaxation in isolated carotid artery segments from both SHR and WKY after pretreatment with phenylephrine, SHR exhibited significantly lower arterial relaxation responses compared with WKY. Moreover, UTP-induced relaxation was substantially reduced by endothelial denudation and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine in both SHR and WKY. The difference in UTP-induced relaxation between both groups was abolished by the selective P2Y2 receptor antagonist AR-C118925XX and the cyclooxygenase (COX) inhibitor indomethacin but not by the thromboxane-prostanoid receptor antagonist SQ29548. Furthermore, we detected the release of PGE2, PGF, and PGI2 in the carotid arteries of SHR and WKY, both at baseline and in response to UTP. UTP administration also increased TXA2 levels in WKY but not SHR. Overall, our results suggest that UTP-induced relaxation in carotid arteries is impaired in SHR perhaps due to impaired P2Y2 receptor signaling, reductions in endothelial NO, and increases in the levels of COX-derived vasoconstrictor prostanoids.

  相似文献   

13.
We have recently demonstrated that the decreased ability of hormones, forskolin and GTP to stimulate adenylate cyclase in heart and aorta from spontaneously hypertensive rats (SHR), as compared to their age-matched Wistar-Kyoto control rats (WKY), was associated with enhanced levels of Gi- and not with Gs-regulatory proteins. In the present studies we have investigated the expression of Gi-regulatory proteins at the mRNA level by Northern blotting. Total RNA of heart ventricle and aorta from WKY and SHR was probed with radiolabeled cDNA inserts encoding Gi alpha-2 and Gi alpha-3. The Gi alpha-2 and Gi alpha-3 probes detected a message of 2-3 and 3-5 kb, respectively, in both WKY and SHR, however, the message was significantly enhanced in SHR, as compared by WKY. On the other hand the cDNA probe encoding Gs alpha detected a message of 1.8 kb in heart and aorta from both WKY and SHR, however, no difference in the levels of Gs alpha mRNA was detected in SHR and WKY tissues. These results indicate that the mRNA levels of Gi alpha-2 and Gi alpha-3 and not of Gs are overexpressed in heart and aorta from SHR, which may be responsible for the increased levels of Gi as shown earlier by immunoblotting techniques. It may be suggested that the enhanced vascular tone and impaired cardiac contractility in hypertension may partly be the consequences of increased levels of Gi in heart and aorta.  相似文献   

14.
Insulin stimulates production of NO in vascular endothelium via activation of phosphatidylinositol (PI) 3-kinase, Akt, and endothelial NO synthase. We hypothesized that insulin resistance may cause imbalance between endothelial vasodilators and vasoconstrictors (e.g., NO and ET-1), leading to hypertension. Twelve-week-old male spontaneously hypertensive rats (SHR) were hypertensive and insulin resistant compared with control Wistar-Kyoto (WKY) rats (systolic blood pressure 202 +/- 11 vs. 132 +/- 10 mmHg; fasting plasma insulin 5 +/- 1 vs. 0.9 +/- 0.1 ng/ml; P < 0.001). In WKY rats, insulin stimulated dose-dependent relaxation of mesenteric arteries precontracted with norepinephrine (NE) ex vivo. This depended on intact endothelium and was blocked by genistein, wortmannin, or N(omega)-nitro-l-arginine methyl ester (inhibitors of tyrosine kinase, PI3-kinase, and NO synthases, respectively). Vasodilation in response to insulin (but not ACh) was impaired by 20% in SHR (vs. WKY, P < 0.005). Preincubation of arteries with insulin significantly reduced the contractile effect of NE by 20% in WKY but not SHR rats. In SHR, the effect of insulin to reduce NE-mediated vasoconstriction became evident when insulin pretreatment was accompanied by ET-1 receptor blockade (BQ-123, BQ-788). Similar results were observed during treatment with the MEK inhibitor PD-98059. In addition, insulin-stimulated secretion of ET-1 from primary endothelial cells was significantly reduced by pretreatment of cells with PD-98059 (but not wortmannin). We conclude that insulin resistance in SHR is accompanied by endothelial dysfunction in mesenteric vessels with impaired PI3-kinase-dependent NO production and enhanced MAPK-dependent ET-1 secretion. These results may reflect pathophysiology in other vascular beds that directly contribute to elevated peripheral vascular resistance and hypertension.  相似文献   

15.
Spontaneously hypertensive rat (SHR) offspring from l-arginine- and antioxidant-supplemented SHR dams had persistent lower blood pressure in adulthood. We investigated the influence of vascular mechanism in this effect. We analyzed response to acetylcholine and phenylephrine in aorta and superior mesenteric arteries from Wistar–Kyoto (WKY), SHR, and SHR perinatally supplemented with l-arginine and 4-hydroxy-2,2,6,6-tetramethylpiperidinoxyl (TEMPOL; SHR-suppl). Supplements reduced blood pressure persistently in SHR. Relaxation to acetylcholine was greater in WKY than SHR and remained unmodified in SHR-suppl compared with SHR. Acute TEMPOL did not alter relaxation to acetylcholine in WKY but increased it similarly in SHR and SHR-suppl. Phenylephrine contraction was increased in SHR compared to WKY. In SHR-suppl, this response was similar to SHR. Endothelium removal or N-nitro-l-arginine methyl ester (L-NAME) increased contraction to phenylephrine more in WKY than SHR. In SHR-suppl, this was similar to SHR. In both SHR and SHR-suppl, TEMPOL similarly reduced phenylephrine response. This effect was prevented by L-NAME. Results exposed reinforce the concept that oxidative stress during perinatal period is a contributing factor to the development of hypertension in SHR. Results also reveal that the beneficial effect of this supplementation does not appear to be related to improved endothelial function, suggesting that other regulatory mechanisms of blood pressure may be involved.  相似文献   

16.
17.
To clarify the metabolism of PGE2, prostacyclin (PGI2) and thromboxane A2 (TxA2) in small vessels in spontaneously hypertensive rats (SHR), we removed superior mesenteric vascular beds from 10 week old SHR and age matched normotensive controls (WKY). The mesenteric artery was perfused with Krebs-Henseleit buffer and samples of effluent collected every 15 minutes during 3 hours perfusion for analysis of PGE2, 6-keto-PGF1 alpha (a stable metabolite of PGI2) and TxB2 (a stable metabolite of TxA2) by specific radioimmunoassays. Levels of all three arachidonic acid (AA) metabolites, PGE2, 6-keto-PGF1 alpha and TxB2, in the mesenteric effluent were significantly reduced in SHR as compared to WKY. TxB2 was detected in all samples throughout the perfusion. 6-keto-PGF1 alpha/PGE2 ratios and TxB2/PGE2 ratios were significantly increased in SHR. 6-keto-PGF1 alpha/TxB2 ratios in the first four samples were significantly decreased in SHR as compared to WKY. These data suggest that there may be reduced availability of PG precusor AA and unbalanced synthesis of PGs in small vessels in SHR. Both may have relevance to the development of hypertension in the animals.  相似文献   

18.
19.
The aim of this study was to investigate nitric oxide (NO) production and L-NAME-sensitive component of endothelium-dependent vasorelaxation in adult normotensive Wistar-Kyoto rats (WKY), borderline hypertensive rats (BHR) and spontaneously hypertensive rats (SHR). Blood pressure (BP) of WKY, BHR and SHR (determined by tail-cuff) was 111+/-3, 140+/-4 and 184+/-6 mm Hg, respectively. NO synthase activity (determined by conversion of [(3)H]-L-arginine) was significantly higher in the aorta of BHR and SHR vs. WKY and in the left ventricle of SHR vs. both BHR and WKY. L-NAME-sensitive component of endothelium-dependent relaxation was investigated in the preconstricted femoral arteries using the wire myograph during isometric conditions as a difference between acetylcholine-induced relaxation before and after acute N(G)-nitro-L-arginine methyl ester pre-treatment (L-NAME, 10(-5) mol/l). Acetylcholine-induced vasorelaxation of SHR was significantly greater than that in WKY. L-NAME-sensitive component of vasorelaxation in WKY, BHR and SHR was 20+/-3 %, 29+/-4 % (p<0.05 vs. WKY) and 37+/-3 % (p<0.05 vs. BHR), respectively. There was a significant positive correlation between BP and L-NAME-sensitive component of relaxation of the femoral artery. In conclusion, results suggest the absence of endothelial dysfunction in the femoral artery of adult borderline and spontaneously hypertensive rats and gradual elevation of L-NAME-sensitive component of vasorelaxation with increasing blood pressure.  相似文献   

20.
Profilin-1 has recently been linked to vascular hypertrophy and remodeling. Here, we assessed the hypothesis that angiotensin (Ang) II type I receptor antagonist telmisartan improves vascular hypertrophy by modulation of expression of profilin-1 and angiotensin-converting enzyme 2 (ACE2). Ten-week-old male spontaneously hypertensive rats (SHR) were received oral administration of telmisartan (5 or 10 mg/kg; daily) or saline for 10 weeks. Compared with Wistar–Kyoto (WKY) rats, there were marked increases in systolic blood pressure and profilin-1 expression and reduced ACE2 and peroxisome proliferator activated receptor-γ (PPARγ) levels in aorta of SHR, associated with elevated extracellular-signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) phosphorylation signaling and aortic hypertrophy characterized with increased media thickness, which were strikingly reversed by telmisartan. In cultured human umbilical artery smooth muscle cells (HUASMCs), Ang II induced a dose-dependent increase in profilin-1 expression, along with decreased ACE2 protein expression and elevated ERK1/2 and JNK phosphorylation. In addition, blockade of ERK1/2 or JNK by either specific inhibitor was able to abolish Ang II-induced ACE2 downregulation and profilin-1 upregulation in HUASMCs. Importantly, treatment with telmisartan (1 or 10 μM) or recombinant human ACE2 (2 mg/ml) largely ameliorated Ang II-induced profilin-1 expression and ERK1/2 and JNK phosphorylation and augmented PPARγ ?expression in the cultured HUASMCs. In conclusion, telmisartan treatment attenuates vascular hypertrophy in SHR by the modulation of ACE2 and profilin-1 expression with a marked reversal of ERK1/2 and JNK phosphorylation signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号