首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The mobilization of glycogen and phosphoarginine during work and their resynthesis during periods of recovery were investigated in abdominal muscles of the shrimpCrangon crangon. All parameters, metabolite levels as well as glycogen phosphorylase (EC 2.4.1.1) and synthase (EC 2.4.1.11) activities were determined in each individual shrimp investigated. At the onset of work both glycogen and phosphoarginine were degraded with the rate of phosphoarginine utilization being more than 80-fold faster than glycogen. After exhaustive work phosphoarginine stores were replenished within 30 min and seemed to exceed the resting level thereafter. In contrast, glycogen was not resynthesized immediately after work, but was further degraded during recovery leading to the accumulation of lactate. Only when the phosphagen level had reached the resting level did glycogenolysis shift to its resynthesis. The shift is characterized by: (1) a change in the mass action ratio of phosphoglucomutase from values below the equilibrium constant to values above the constant, (2) a dramatic decrease in the ratio fructose 1,6-bisphosphate/fructose 6-phosphate indicating phosphofructokinase inhibition, (3) an increase in the glucose concentration, and (4) an increase in the proportion of glycogen synthase I. The inactivation of glycogen phosphorylase by dephosphorylation during recovery was 2.4-fold. 36±8% (n=5) of total activity remained in the phosphorylated form. It is proposed that this part of the enzyme was inactivated by the drop in inorganic phosphate level due to the restoration of phosphoarginine.  相似文献   

2.
Glycogen metabolism was studied in primary and Herpesvirus-transformed cultures of neonatal rat brain astrocytes. A small fraction of the glucose consumed was conserved in glycogen in both the primary and the transformed astrocytic cell cultures. After addition of culture medium containing 5.5 mM glucose, glycogen increased to maximal levels within 2.5 h, the approximate time at which half of the medium glucose was consumed, and rapidly declined thereafter in both the primary and transformed astrocytic cultures. Maximum levels of glycogen were apparently related to the cell density of the Herpesvirus-transformed cultures, but primary cultures did not show this behavior. At any given cell density, maximal levels of glycogen were dependent on the concentration of extracellular glucose. Administration of glucose caused a transient activation of glycogen synthase alpha and a rapid inactivation of glycogen phosphorylase alpha.  相似文献   

3.
A series of amino acid anthranilamide derivatives identified from a high-throughput screening campaign as novel, potent, and glucose-sensitive inhibitors of human liver glycogen phosphorylase a are described. A solid-phase synthesis using Wang resin was also developed which provided efficient access to a variety of analogues, and resulted in the identification of key structure–activity relationships, and the discovery of a potent exemplar (IC50 = 80 nM). The SAR scope, synthetic strategy, and in vitro results for this series are presented herein.  相似文献   

4.
The correlation between blood glucose levels, the concentration of glycogen, the activities of glycogen sythase and phosphorylase and their respective kinases and phosphatases was examined in liver of rat fetuses between day 18 of gestation and one day after birth. Between day 18 and 21 there is a rapid increase in the concentration of glycogen and in the activity of synthase a and a much slower increase in the activity of phosphorylase a. The activity of the respective kinases increased rapidly during this period and reached maximun on day 21. The activity of synthase phosphatase and phosphorylase phosphatase increased after day 18, to reach a maximum on day 19 and 20, respectively, but decreased again towards day 21. The possibility that the changes in glycogen concentration and enzyme activities were related to an effect of glucose of AMP on the respective phosphatases was considered. It was found that the Km of phosphatase for glucose in the prenatal period was 5–7 mM, as in the adult. Since the level of blood glucose during this period was constant (2.8 mM), an effect of glucose on phosphatase activity seems unlikely. AMP concentration increased between day 18 and 21 from 6–15 nmol/g. In view of the low level of phosphorylase a activity during this period, the increase in AMP concentration is not considered to be important in the regulation of glycogen breakdown at this time.Immediately after birth blood glucose levels dropped to 5 mg/dl. This was accompanied by a rapid decrease in glycogen concentration and in the activity of glycogen synthase and a rise in phosphorylase activity. Blood glucose levels returned to the initial level within 1 h after birth, whereas the changes in glycogen concentration and enzyme activities continued for at least 3 h after birth. On day 22 all parameters examined had reached the level found in adult rat liver.It is suggested that the rapid changes observed immediately after birth are due to an effect of hypoglycemia mediated by hormones and cannot be ascribed to direct effects of metabolites on the enzyme systems involved.  相似文献   

5.
Glycogen is a uterine histotroph nutrient synthesized by endometrial glands in response to estradiol. The effects of estradiol may be mediated, in part, through the catecholestrogens, 2-hydroxycatecholestradiol (2-OHE2) and 4-hydroxycatecholestradiol (4-OHE2), produced by hydroxylation of estradiol within the endometrium. Using ovariectomized mink, our objectives were to determine the effects of estradiol, 4-OHE2, and 2-OHE2 on uterine: 1) glycogen concentrations and tissue localization; 2) gene expression levels for glycogen synthase, glycogen phosphorylase, and glycogen synthase kinase-3B; and 3) protein expression levels for glycogen synthase kinase-3B (total) and phospho-glycogen synthase kinase-3B (inactive). Whole uterine glycogen concentrations (mean ± SEM, mg/g dry wt) were increased by estradiol (43.79 ± 5.35), 4-OHE2 (48.64 ± 4.02), and 2-OHE2 (41.36 ± 3.23) compared to controls (4.58 ± 1.16; P ≤ 0.05). Percent glycogen content of the glandular epithelia was three-fold greater than the luminal epithelia in response to estradiol and 4-OHE2 (P ≤ 0.05). Expression of glycogen synthase mRNA, the rate limiting enzyme in glycogen synthesis, was increased by 4-OHE2 and 2-OHE2 (P ≤ 0.05), but interestingly, was unaffected by estradiol. Expression of glycogen phosphorylase and glycogen synthase kinase-3B mRNAs were reduced by estradiol, 2-OHE2, and 4-OHE2 (P ≤ 0.05). Uterine phospho-glycogen synthase kinase-3B protein was barely detectable in control mink, whereas all three steroids increased phosphorylation and inactivation of the enzyme (P ≤ 0.05). We concluded that the effects of estradiol on uterine glycogen metabolism were mediated in part through catecholestrogens; perhaps the combined actions of these hormones are required for optimal uterine glycogen synthesis in mink.  相似文献   

6.
A series of (benzimidazol-2-yl)-aniline (1) derivatives has been synthesized and evaluated as glycogen phosphorylase (GP) inhibitors. Kinetics studies revealed that compounds displaying a lateral heterocyclic residue with several heteroatoms (series 3 and 5) exhibited modest inhibitory properties with IC50 values in the 400–600 μM range. Arylsulfonyl derivatives 7 (Ar: phenyl) and 9 (Ar: o-nitrophenyl) of 1 exhibited the highest activity (series 2) among the studied compounds (IC50 324 μM and 357 μM, respectively) with stronger effect than the p-tolyl analogue 8.  相似文献   

7.
The subcellular distribution of glycogen phosphorylase in pectoralis muscle from normal and dystrophic chickens was determined as a function of age. A substantially larger proportion of the total activity was associated with membranes cellular organelles, both mitochondria and sarcoplasmic reticulum, in preparations from dystrophic birds. The difference could be detected as early as 2 weeks ex ovo. Interaction of phosphorylase with cellular membranes may provide a probe for the underlying membrane defect in this dystrophyl model.  相似文献   

8.
The overall thermal denaturation of glycogen phosphorylaseb is irreversible and our results conform to the theoretical prediction of a reversible process followed by a slower irreversible process. The basic thermodynamic parameters of glycogen phosphorylaseb denaturation have been worked out and found to be: critical temperature 57.0±0.5°C, transition half-width 8±1°C, and calorimetric enthalpy change and Van't Hoff enthalpy change of the denaturation process 450±50 and 105±15 kcal/mol of enzyme monomer, respectively, at pH 7.4. These parameters have been found to be largely altered by the detergents octylglucoside, cholate, and deoxycholate at or below their critical micelle concentration, but not by Triton X-100 nor by lecithin liposomes. Organic solvents, such as dimethyl sulfoxide and methanol, and the presence of sarcoplasmic reticulum membranes produces an alteration of the denaturation thermogram of glycogen phosphorylaseb similar to that produced by the above-mentioned detergents. These results allow us to hypothesize that hydrophobic domains of glycogen phosphorylaseb are involved in its association to sarcoplasmic reticulum membranes in the sarcoplasmic reticulum/glycogenolytic complex of mammalian skeletal muscle.  相似文献   

9.
The activity of glycogen phosphorylase (GPase) in the active a-form (GPase a) is dependent on the hydration state of hepatocytes. We establish that GPase a catalysis in catfish (Ameiurus nebulosus) hepatocytes is a function of medium osmolarity and that a linear relationship exists between GPase a activity and osmolarity between 254 mosmol l–1 and 478 mosmol l–1. Exposure of isolated hepatocytes to hyperosmotic media increases enzyme activity up to 7-fold, indicative of covalent phosphorylation. GPase activation associated with cell shrinkage peaks within 10 min of exposure. The average degree of activation (2.7-fold-increase of GPase a) is only slightly less than in hepatocytes exposed to glucagon (3.1-fold-increase) under isosmotic conditions; with glucagon, the maximum is reached within 2 min. Phosphorylation status remains elevated during the entire 40 min experimental period; cells do not undergo regulatory volume increase (RVI) during this period and do not regain pre-exposure volume. We interpret the increased GPase a activity as an inherent response to hyperosmotic stress, likely brought about by molecular crowding. Activation of the enzyme results in increased glucose production from endogenous glycogen. Glucose is not retained in the liver cells, but may act as an oxidative substrate in extrahepatic tissues for the increased metabolic demand of ion regulation. Protein kinase A or intracellular Ca2+ make apparently small contributions to the activation of GPase, leaving us to speculate on alternate routes of enzyme activation. Conversely, hepatocyte swelling in hyposmotic medium leads to significant decreases in GPase a activity and curtailed glucose output. A minimum is attained in 10 min, and pre-insult rates are re-established within 40 min, somewhat lagging behind readjustment in cell volume by regulatory volume decrease (RVD). We conclude that cell swelling and subsequent RVD do not signify stress to the cells and metabolic demand may be decreased under cell swelling conditions. Alteration of GPase phosphorylation with extracellular osmolarity appears to be a general phenomenon, since we also find it in hepatocytes of another freshwater catfish (Clarias batrachus) and a marine scorpaenid (Sebastes caurinus).Abbreviations BAPTA 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid - BSA bovine serum albumin - cAMP adenosine 3',5-cyclic monophosphate - GPase glycogen phosphorylase - MDH malate dehydrogenase - MHM modified Hanks medium - PKA c-AMP dependent protein kinase A - 8-Br-Rp-cAMPS 8-Bromo-Rp-3',5'-cyclic adenosine monophosphorothioate - RT room temperature - RVD regulatory volume decrease - RVI regulatory volume increaseCommunicated by L.C.-H. Wang  相似文献   

10.
11.
Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.  相似文献   

12.
Bacterial glycogen synthases transfer a glucosyl unit, retaining the anomeric configuration, from ADP-glucose to the non-reducing end of glycogen. We modeled the Escherichia coli glycogen synthase based on three glycosyltransferases with a GT-B fold. Comparison between the model and the structure of the active site of crystallized retaining GT-B glycosyltransferases identified conserved residues with the same topology. To confirm the importance of these residues predicted by the model, we studied them in E. coli glycogen synthase by site-directed mutagenesis. Mutations D137A, R300A, K305A, and H161A decreased the specific activity 8100-, 2600-, 1200-, and 710-fold, respectively. None of these mutations increased the Km for glycogen and only H161A and R300A had a higher Km for ADP-Glc of 11- and 8-fold, respectively. These residues were essential, validating the model that shows a strong similarity between the active site of E. coli glycogen synthase and the other retaining GT-B glycosyltransferases known to date.  相似文献   

13.
The turnover of glycogen phosphorylase has been measured using the cofactor, pyridoxal phosphate, as a label specific for this enzyme in skeletal muscle. Radiolabelled pyridoxine administered in vivo is incorporated into a protein-bound fraction in skeletal muscle, shown by several criteria to be equivalent to glycogen phosphorylase. This pool of radiolabel disapears slowly with a half-life of 11.9 days, taken to be a good estimate of the intracellular half-life of the enzyme. The use of the cofactor in this fashion minimises overestimation of half-life that results from reincorporation of the label. Further, premature dissociation of the cofactor from native enzyme, which would lead to underestimation of half-life, is unlikely. At the level of sensitivity given by this method there was little evidence for the appearance of pyridoxal phosphate-labelled degradation intermediates of the enzyme.  相似文献   

14.
Summary Biochemical mechanisms underlying anaerobiosis were assessed in two Mediterranean bivalve species, Scapharca inaequivalvis and Venus gallina, with widely differing tolerances for oxygen lack. These species displayed LT50 values for anoxic survival at 17–18°C of 17 and 4 d, respectively. Succinate and alanine were the major products of 24 h anaerobic metabolism in both species but only S. inaequivalvis further metabolized succinate to propionate. Both species reduced metabolic rate while anoxic but metabolic arrest was more pronounced in S. inaequivalvis. Calculated ATP turnover rate (MATP) during exposure to N2-bubbled seawater was only 4.51% of the aerobic rate in S. inaequivalvis but was 12.68% in V. gallina. To counteract a greater load of acid end products, V. gallina foot showed a significantly greater buffering capacity, 23.38±0.20 slykes, compared to 19.6±0.79 slykes in S. inaequivalvis. The two species also differed distinctly in the enzymatic regulation of anaerobiosis. In V. gallina anoxia exposure caused only a small change in PFK kinetic parameters (a decrease in Ka AMP) and had no effect on glycogen phosphorylase. By contrast, S. inaequivalvis foot showed a strong modification of enzyme properties in anoxia. The percentage of glycogen phosphorylase in the a form dropped significantly only in S. inaequivalvis. Other changes included alterations in the properties of PFK leading to a less active enzyme form in anoxia. Compared to the aerobic enzyme form, PFK from anoxic foot showed a reduced affinity for fructose-6-P (Km increased 2.4-fold), greater inhibition by ATP (I50 decreased 6.8-fold), and an increase in sensitivity to AMP activation (Ka decreased by 50%). These enzyme changes appear to be key to a glycolytic rate depression during anaerobiosis in S. inaequivalvis foot muscle.Abbreviations EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol-bis-(2-aminoethyl)-tetraacetic acid - Fructose-2,6-P 2 fructose-2,6-bisphosphate - Fructose-6-P fructose-6-phosphate - K a AMP Activation constant (concentration of AMP required to increase the reaction to twice the rate it shows in the absence of AMP) - MATP ATP turnover rate - P i inorganic phosphate - PCA Perchloric acid - PFK 6-phosphofructo-1-kinase - TCA Trichloroacetic acid  相似文献   

15.
16.
17.
18.
The skin epithelium and its organelles use glycogen as well as glucose as source of energy. Therefore the characterisation of glycogen metabolism and the enzymes involved is important in the study of mechanisms regulating the normal or abnormal differentiation of skin organelles such as sebaceous glands and hair follicles.The present paper describes fluorimetric methods for the determination of glycogen and for the measurements of phosphorylase and phosphorylase kinase activity in one and the same lysate of minute tissue samples. The methods were tested for their suitability on freshly isolated human hair follicles and cultured hair follicle cells. The possible use of these techniques for studies on the pathophysiology of acne and hirsutism is discussed.  相似文献   

19.
Summary An electron microscope study of the epithelium of rabbit fallopian tube demonstrated a rarely described intracytoplasmic structure consisting of an array of smooth membranes associated with glycogen particles. This organelle is seen exclusively in the ciliated cells. A three-dimensional reconstruction of these glycogen bodies has been made from serial sections. The peripheral localization of the rough-surfaced membranes in continuity with intra-corpuscular smooth membranes, which have lost their granules, suggests a possible role for the rough membranes in the genesis of the smooth membranes of these glycogen bodies. The role of both the smooth and the rough membranes in glycogenesis and glycogenolysis is discussed.This investigation was made in part in the Laboratoire d'Hormonologie et de Cytologie Expérimentale, Hôpital Broca, Paris.  相似文献   

20.
O-peracetylated N-(beta-D-glucopyranosyl)imino trimethylphosphorane obtained in situ from 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl azide and PMe3 was reacted with saturated and unsaturated aliphatic and aromatic dicarboxylic acids, or their anhydrides, or monoesters to give the corresponding N-(beta-D-glucopyranosyl) monoamides of dicarboxylic acids or derivatives. The acetyl protecting groups were removed according to the Zemplén protocol to give a series of compounds which showed moderate inhibitory effects against rabbit muscle glycogen phosphorylase b. The best inhibitor was 3-(N-beta-D-glucopyranosyl-carbamoyl)propanoic acid (7) with Ki = 20 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号