首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A mev-1(kn1) mutant of the nematode Caenorhabditis elegans is defective in the cytochrome b large subunit (Cyt-1/ceSDHC) in complex II of the mitochondrial electron transport chain. We have previously shown that a mutation in mev-1 causes shortened life span and rapid accumulation of aging markers such as fluorescent materials and protein carbonyls in an oxygen-dependent fashion. However, it remains unclear as to whether this hypersensitivity is caused by direct toxicity of the exogenous oxygen or by the damage of endogenous reactive oxygen species derived from mitochondria. Here we report important biochemical changes in mev-1 animals that serve to explain their abnormalities under normoxic conditions: (i) an overproduction of superoxide anion from mitochondria; and (ii) a reciprocal reduction in glutathione content even under atmospheric oxygen. In addition, unlike wild type, the levels of superoxide anion production from mev-1 mitochondria were significantly elevated under hyperoxia. Under normal circumstances, it is well known that superoxide anion is produced at complexes I and III in the electron transport system. Our data suggest that the mev-1(kn1) mutation increases superoxide anion production at complex II itself rather than at complexes I and III. The mev-1 mutant also had a lactate level 2-fold higher than wild type, indicative of lactic acidosis, a hallmark of human mitochondrial diseases. These data indicate that Cyt-1/ceSDHC plays an important role not only in energy metabolism but also in superoxide anion production that is critically involved in sensitivity to atmospheric oxygen.  相似文献   

2.
The MSC16 cucumber (Cucumis sativus L.) mutant with lower activity of mitochondrial Complex I was used to study the influence of mitochondrial metabolism on whole cell energy and redox state. Mutant plants had lower content of adenylates and NADP(H) whereas the NAD(H) pool was similar as in wild type. Subcellular compartmentation of adenylates and pyridine nucleotides were studied using the method of rapid fractionation of protoplasts. The data obtained demonstrate that dysfunction of mitochondrial respiratory chain decreased the chloroplastic ATP pool. No differences in NAD(H) pools in subcellular fractions of mutated plants were observed; however, the cytosolic fraction was highly reduced whereas the mitochondrial fraction was more oxidized in MSC16, as compared to WTc. The NADP(H) pool in MSC16 protoplasts was greatly decreased and the chloroplastic NADP(H) pool was more reduced, whereas the extrachloroplastic pool was much more oxidized, than in WTc protoplast. Changes in nucleotides distribution in cucumber MSC16 mutant were compared to changes found in tobacco (Nicotiana sylvestris) CMS II mitochondrial mutant. In contrast to MSC16 cucumber, the content of adenylates in tobacco mutant was much higher than in tobacco wild type. The differences were more pronounced in leaf tissue collected after darkness than in the middle of the photoperiod. Results obtained after tobacco protoplast fractionating showed that the increase in CMS II adenylate content was mainly due to a higher level in extrachloroplast fraction. Both mutations have a negative effect on plant growth through perturbation of chloroplast/mitochondrial interactions.  相似文献   

3.
Much attention has been focused on the hypothesis that oxidative damage plays in cellular and organismal aging. A mev-1 (kn1) mutant of Caenorhabditis elegans, isolated on the basis of its methyl viologen (paraquat) hypersensitivity, is also hypersensitive to elevated oxygen levels. Unlike the wild type, its life span decreases dramatically as oxygen concentrations are increased from 1% to 60%. Strains, which bear this mutation, accumulate fluorescent materials and protein carbonyl groups, markers of aging, at faster rates than the wild type. We have cloned mev-1 gene by transformation rescue and found that it is, in fact, the previously sequenced gene (cyt-1) that encodes succinate dehydrogenase cytochrome b. A missense mutation abolishes complex II activity in the mitochondrial membrane but not succinate dehydrogenase enzyme activity per se. These data suggest that CYT-1 directly participates in electron transport from FADH2 to coenzyme Q. Moreover, mutational inactivation of this process renders animals susceptible to oxidative stress and, as a result, leads to premature aging.  相似文献   

4.
[目的]探究丙酮丁醇梭菌硫氧还蛋白系统在生长和代谢过程中的功能.[方法]使用ClosTron系统对硫氧还蛋白系统中的硫氧还蛋白还原酶基因(trxB)进行插入失活,得到突变株,通过Southern杂交方法验证插入内含子的拷贝数;在基本培养基中进行分批发酵,比较并分析突变株的生长特点;通过pH控制,利用限磷的连续发酵方法使...  相似文献   

5.
A fast and reproducible procedure was elaborated for isolation of tightly coupled mitochondria from wild type and nap mutant Neurospora crassa cells harvested at different growth stages. The isolated mitochondrial preparations had controlled metabolic states and were tightly coupled, i.e., displayed good respiratory control and had close to the theoretically expected maximal ADP/O ratios upon oxidation of Krebs cycle intermediates and exogenous NADH. They contained the fully competent respiratory chain with all three points of energy conservation. Oxidation of all examined substrates by mitochondria from both wild type and mutant cells was mediated by two alternative terminal oxidative systems, albeit to varying extent, with the more pronounced engagement of the alternative oxidase in the stationary growth phase and with a minor contribution of this non-phosphorylating pathway in the substrate oxidation by mutant mitochondria. Oxidation of NAD-dependent substrates by mitochondria from the two cell types was accommodated via both rotenone-sensitive and rotenone-insensitive pathways, while the level of rotenone-insensitive pathway in mutant cells was lower than in wild type cells. It is suggested that a more limited contribution of alternative non-phosphorylating oxidative pathways to the total respiration in mutant cells, as compared with wild type cells, could, at least partially, explain an elevated ATP level in these cells. However, the absence of principal differences in the arrangement of the respiratory chain in mitochondria of wild type and mutant cells implies that the elevated ATP level in the nap mutant is largely related to reduced ATP expenses for transport processes in these cells.  相似文献   

6.
以拟南芥(Arabidopsis thaliana)为研究材料,从T-DNA突变体库中筛选分离得到1株脱落酸(ABA)敏感突变体asm1(ABA sensitive mutant 1,asm1),在含有ABA的培养基中,与野生型相比,asm1突变体的根伸长明显受到抑制,且其种子萌发结果显示asm1对ABA同样表现出敏感特性。在生长发育方面,asm1突变体抽苔时间提前,植株矮化,并且荚果长度明显小于野生型。利用远红外成像系统分析发现,在干旱胁迫下asm1突变体叶面温度高于野生型;失水率分析显示突变体失水率降低以及水分散失减少。遗传学分析表明,asm1是单基因隐性突变且与一个T-DNA插入共分离;通过图位克隆成功获得候选基因ASM1。RT-PCR结果显示,在突变体中ASM1的表达受到抑制,并且能够调控多种ABA信号通路和胁迫应答基因的表达水平。研究结果表明,ASM1可能参与调控ABA信号转导并应答干旱胁迫。  相似文献   

7.
Strains of Saccharomyces cerevisiae that express either the wild type or the amyotrophic lateral sclerosis-associated mutant human copper-zinc superoxide dismutase (SOD1) proteins A4V and G93A, respectively, in a yeast SOD1-deficient parent strain were used to investigate the hypothesis that expression of a mutant SOD1 protein causes deficient mitochondrial electron transport as a possible mechanism for disease induction. Mitochondria isolated from the wild type SOD1-expressing yeast were identical to mitochondria from the parent strain in heme content and activities of complexes II, III, and IV. Mitochondria isolated from the A4V-expressing yeast had decreased rates of electron transport in complexes II+III, III, and IV and corresponding decreases in hemes b, c-c1, and a-a3 content compared to mitochondria from wild type human SOD1-expressing yeast. Mitochondria isolated from G93A-expressing yeast had decreased rates of electron transport in complex IV and probably in complex II with a corresponding decrease in heme a-a3 content. These results suggest that mutant SOD1-expression causes defective electron transport complex assembly and that the yeast system will provide an excellent model for the study of the mechanism of mutant SOD1-induced mitochondrial electron transport defects.  相似文献   

8.
Mitochondria are dynamic organelles that were found to fuse and divide in many different cell types. Mitochondrial fusion plays important roles in maintenance of respiratory capacity, dissipation of metabolic energy, and inheritance of mitochondrial DNA. While the molecular machinery of mitochondrial fusion has been characterized in great detail in yeast and mammals, only little is known about mitochondrial fusion in higher plants and algae. We asked whether mitochondrial fusion can be observed in the unicellular green alga Chlamydomonas reinhardtii. Mitochondria were stained with fluorescent dyes in gametes, and mixing of fluorescent markers was detected by fluorescence microscopy in zygotes indicating fusion. Mitochondrial fusion was observed in wild type zygotes, and also in respiratory mutants, albeit with less efficiency. We conclude that mitochondria readily fuse in green algae.  相似文献   

9.
Novel mutants (xan1 and xan2) of the unicellular green alga Nannochloropsis oculata are impaired in xanthophyll biosynthesis, thereby producing aberrant levels of xanthophylls. High-performance liquid chromatography (HPLC) analysis revealed that the xan1 and xan2 mutants have double the violaxanthin (V) content, but have significantly decreased lutein content in their cells compared to the wild type. Furthermore, these mutants contain two to three times more zeaxanthin than the wild type under low light (LL) growth conditions. However, this xanthophyll aberration in N. oculata did not affect the normal growth and the major cellular chemical composition of the xan1 strain. The xanthophyll pool size of the LL-grown mutant was 1.8-fold greater than that of the wild type. Under high light (HL) growth conditions, V content was substantially decreased in both the mutant and wild types because of the epoxidation state of the xanthophylls. Under LL growth conditions, the deepoxidation states of the xanthophyll pool sizes were 0.1 and 1.2 in the wild type and the mutant, respectively. However, the deepoxidation states of the xanthophyll pool sizes were 0.78 in the wild type and 0.87 in the mutant under HL growth conditions. We observed that the level of one of the commercially important xanthophylls, zeaxanthin, was higher in the mutant than in the wild type under all culture conditions. This mutant is discussed in terms of its commercial value and potential utilization by the algal biotechnology industry for the production of zeaxanthin.  相似文献   

10.
The biochemical effects of several newly induced low xanthine dehydrogenase (lxd) mutations in Drosophila melanogaster were investigated. When homozygous, all lxd alleles simultaneously interrupt each of the molybdoenzyme activities to approximately the same levels: xanthine dehydrogenase, 25%; aldehyde oxidase, 12%; pyridoxal oxidase, 0%; and sulfite oxidase, 2% as compared to the wild type. In order to evaluate potentially small complementation or dosage effects, mutant stains were made coisogenic for 3R. These enzymes require a molybdenum cofactor, and lxd cofactor levels are also reduced to less than 10% of the wild type. These low levels of molybdoenzyme activities and cofactor activity are maintained throughout development from late larval to adult stages. The lxd alleles exhibit a dosage-dependent effect on molybdoenzyme activities, indicating that these mutants are leaky for wild-type function. In addition, cofactor activity is dependent upon the number of lxd + genes present. The lxd mutation results in the production of more thermolabile XDH and AO enzyme activities, but this thermolability is not transferred with the cofactor to a reconstituted Neurospora molybdoenzyme. The lxd gene is localized to salivary region 68 A4-9, 0.1 map unit distal to the superoxide dismutase (Sod) gene.  相似文献   

11.
Summary Two strains ofSaccharomyces cerevisiae were used to study the synthesis of superoxide dismutase. One strain (cytochromec-deficient) contained 5–10% of the normal amounts of total cytochromec, while the other strain was a wild type. The cytochromec-deficient mutant had lower specific growth rate, growth yield, and oxygen uptake than the wild type. The superoxide dismutase and catalase activities, in both strains, were significantly lower under anaerobic than under aerobic conditions. Furthermore, under aerobic conditions the mutant contained higher levels of superoxide dismutase than the wild type which may be attributed to the higher intracellular flux of superoxide radicals caused by the cytochromec deficiency. The mutant also showed a lower level of catalase which was due to glucose repression.Paper Number 10007 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695, U.S.A. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned.  相似文献   

12.
13.
In Deinococcus radiodurans, there is a unique RecQ homolog (DR1289) with three-tandem HRDC domains. Deletion of drrecQ resulted in a low doubling rate and sensitivity to hydrogen peroxide. Here, we used cDNA microarray and biochemical assays to explore the physiological changes in the drrecQ mutant. The expressions of genes with predicted functions involved in iron homeostasis, antioxidant system, electron transport, and energy metabolism were significantly altered in response to drrecQ disruption. More reactive oxygen species (ROS) was accumulated in drrecQ mutant strain when compared to wild type. In addition, ICP-MS results showed that the intracellular level of iron was relatively higher, whereas the concentration of manganese was lower in drrecQ mutant than in wild type. Furthermore, our microarray data and pulsed-field gel results showed that DNA suffered more damage in drrecQ mutant than in wild type under 20 mM hydrogen peroxide stress. These results suggested that drrecQ is a gene of pleiotropic functions and contributes to the extraordinary resistance of D. radiodurans against stresses.  相似文献   

14.
Summary A mutant strain of drosophila (D. subobscura) has two types of mitochondrial genomes: a small population (20%) identical to that of the wild strain (15.9 kb) and a predominant population (80%) which has undergone a 5-kb deletion affecting more than 30% of the coding zone. Two cell lines were established from homogenates of embryos from mutant and wild strains. The activities of the respiratory complexes measured in the different cell lines are much lower than in the flies, indicating a glycolytic metabolism. Various modifications of the medium composition did not change this metabolic pathway. The mutant cell line has two types of populations of mitochondrial genomes and the heteroplasmy is equivalent to that measured in the mutant strain. However, the biochemical characteristics differ from those observed in the flies (i.e., the decrease of complex I and III activities), and the various systems of compensation for the consequences of the deletion that are showed in the mutant strain are no longer observed. Furthermore, in contrast with observations made on mutant flies, the heteroplasmy appears unstable in the mutant cell lines: after 60 or so generations, it progressively decreases until it disappears completely. The limited importance of mitochondrial energy metabolism in cells may explain the low impact of the mutation on the established cell line, in contrast to what is seen in the mutant strain.  相似文献   

15.
【背景】暹罗炭疽菌(Colletotrichum siamense)是橡胶炭疽病害的主要致病菌,严重制约着天然橡胶产量。在植物致病真菌中广泛存在同源异型盒转录因子,其参与调控真菌无性生殖、侵染和代谢等诸多方面。【目的】明确在暹罗炭疽菌中鉴定的一个同源异型盒转录因子CsHtf1的生物学功能。【方法】利用同源重组的方法获得Cshtf1基因的敲除突变株,并对其营养生长、孢子产生和致病性等表型进行分析。【结果】Cshtf1基因编码600个氨基酸且含有1个HOX结构域;与野生型相比,Cshtf1敲除突变株营养生长和致病性无显著差异,而突变株分生孢子产量显著降低且黑色素产量增加。【结论】CsHtf1参与调控暹罗炭疽菌的分生孢子及黑色素产生。  相似文献   

16.
A methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans   总被引:9,自引:0,他引:9  
A methyl viologen (paraquat)-sensitive mutant, mev-1 (LG III), in Caenorhabditis elegans was about 4 times more sensitive to methyl viologen than the wild type. This mutant was also hypersensitive to oxygen. The brood size was about 1/4 that of the wild type. The average life span was determined to be 9.3 days as compared to 14.3 days for the wild type. The activity of superoxide dismutase (SOD), a scavenging enzyme for superoxide anion, was about half the wild-type level. We suggest that oxygen radicals may be involved in the normal aging mechanism in C. elegans.  相似文献   

17.
18.
To improve ethanol production in Saccharomyces cerevisiae, two yeast strains were constructed. In the mutant, KAM-4, the GPD1 gene, which encodes a glycerol 3-phosphate dehydrogenase of S. cerevisiae to synthesize glycerol, was deleted. The mutant KAM-12 had the GLT1 gene (encodes glutamate synthase) placed under the PGK1 promoter while harboring the GPD1 deletion. Notably, overexpression of GLT1 by the PGK1 promoter along with GPD1 deletion resulted in a 10.8% higher ethanol production and a 25.0% lower glycerol formation compared to the wild type in anaerobic fermentations. The growth rate of KAM-4 was slightly lower than that of the wild type under the exponential phase whereas KAM-12 and the wild type were indistinguishable in the biomass concentration at the end of growth period. Meanwhile, dramatic reduction of formation of acetate and pyruvic acid was observed in all the mutants compared to the wild type.  相似文献   

19.
Cytokinins are involved in plant cell proliferation leading to plant growth and morphogenesis. Earlier we described a mutant of Arabidopsis thaliana, amp1, that had five times higher levels of cytokinin and had a number of pleiotropic phenotypes, including increased cell proliferation and de-etiolated growth in the dark. While these phenotypes were correlated with higher levels of cytokinin, the actual mechanism of how cytokinin is elevated was not elucidated before. In order to understand if the increased cytokinin is a result of increased biosynthesis or decreased degradation we have compared the synthesis of cytokinins from radiolabelled adenine and the degradation of zeatin ribosides and other cytokinins between amp1 and wild type plants. The degradation of the hormone is not affected in the mutant but there is a 4 to 6 fold increase in cytokinin synthesis compared to the wild type. Because the amp1 mutant is recessive we hypothesise that the AMP1 product negatively regulates cytokinin production.  相似文献   

20.
PS II-H is a small hydrophobic protein that is universally present in the PS II core complex of cyanobacteria and plants. The role of PS II-H was studied by directed mutagenesis and biochemical analysis in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. The psbH disruptant could grow photoautotrophically; however, its growth was much slower than that of the wild type cell. Chromatography enabled the isolation of active oxygen-evolving PS II complexes from both the mutant and the wild type. The mutant yielded a relatively large amount of inactive PS II complex that lacked the following extrinsic proteins: the 33-kDa protein, the 12-kDa protein, and cytochrome c 550 . There were differences between the psbH disruptant and the wild type in terms of the oxygen evolution activities of the cells, thylakoids, and PS II complexes. At high concentrations of 2,6-DCBQ, the activity was much lower in the mutant than in the wild type. Gel filtration chromatography of the PS II complexes showed that both active and inactive PS II complexes isolated from the mutant were mostly in the monomeric form, while the active PS II complex from the wild type was in the dimeric form. The polypeptide composition of both active and inactive PS II complexes from the mutant showed the absence of another small polypeptide, PS II-X. These results suggest that the PS II-H protein is essential for stable assembly of native dimeric PS II complex containing PS II-X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号