首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The yeast Saccharomyces cerevisiae has three G1 cyclin (CLN) genes with overlapping functions. To analyze the functions of the various CLN genes, we examined mutations that result in lethality in conjunction with loss of cln1 and cln2. We have isolated alleles of RAD27/ERC11/YKL510, the yeast homolog of the gene encoding flap endonuclease 1, FEN-1.cln1 cln2 rad27/erc11 cells arrest in S phase; this cell cycle arrest is suppressed by the expression of CLN1 or CLN2 but not by that of CLN3 or the hyperactive CLN3-2. rad27/erc11 mutants are also defective in DNA damage repair, as determined by their increased sensitivity to a DNA-damaging agent, increased mitotic recombination rates, and increased spontaneous mutation rates. Unlike the block in cell cycle progression, these phenotypes are not suppressed by CLN1 or CLN2. CLN1 and CLN2 may activate an RAD27/ERC11-independent pathway specific for DNA synthesis that CLN3 is incapable of activating. Alternatively, CLN1 and CLN2 may be capable of overriding a checkpoint response which otherwise causes cln1 cln2 rad27/erc11 cells to arrest. These results imply that CLN1 and CLN2 have a role in the regulation of DNA replication. Consistent with this, GAL-CLN1 expression in checkpoint-deficient, mec1-1 mutant cells results in both cell death and increased chromosome loss among survivors, suggesting that CLN1 overexpression either activates defective DNA replication or leads to insensitivity to DNA damage.  相似文献   

3.
Observing the effects of gene perturbation on cells or organisms has long been a standard strategy in biological research. We developed a genome-wide gene overexpression library as a new tool for large-scale functional analysis in budding yeast. Previous large-scale genetic studies have focused on applications of the deletion mutant collection, which has arguably revolutionized the functional characterization of yeast genes. While extremely powerful, deletion mutant experiments are generally limited to the characterization of loss-of-function phenotypes. We have explored the potential for using the Synthetic Genetic Array (SGA) method, a platform for high-throughput genetic analysis, with a genome-wide “overexpression array”, in which each strain on the array overexpresses a unique yeast gene. The overexpression array enables gain-of-function phenotypes to be examined on a large scale, providing a unique insight into gene function and a novel source of reagents for the global mapping of genetic networks and functional relationships amongst genes and pathways. Understanding the molecular bases of overexpression phenotypes should also shed new light on the nature of genetic dominance.  相似文献   

4.
5.
Lamina-associated polypeptide (LAP) 2alpha is a nonmembrane-bound LAP2 isoform that forms complexes with nucleoplasmic A-type lamins. In this study, we show that the overexpression of LAP2alpha in fibroblasts reduced proliferation and delayed entry into the cell cycle from a G0 arrest. In contrast, stable down-regulation of LAP2alpha by RNA interference accelerated proliferation and interfered with cell cycle exit upon serum starvation. The LAP2alpha-linked cell cycle phenotype is mediated by the retinoblastoma (Rb) protein because the LAP2alpha COOH terminus directly bound Rb, and overexpressed LAP2alpha inhibited E2F/Rb-dependent reporter gene activity in G1 phase in an Rb-dependent manner. Furthermore, LAP2alpha associated with promoter sequences in endogenous E2F/Rb-dependent target genes in vivo and negatively affected their expression. In addition, the expression of LAP2alpha in proliferating preadipocytes caused the accumulation of hypophosphorylated Rb, which is reminiscent of noncycling cells, and initiated partial differentiation into adipocytes. The effects of LAP2alpha on cell cycle progression and differentiation may be highly relevant for the cell- and tissue-specific phenotypes observed in laminopathic diseases.  相似文献   

6.
Ethanol alters many subsystems of Saccharomyces cerevisiae, including the cell cycle. Two ethanol-responsive lncRNAs in yeast interact with cell cycle proteins, and here, we investigated the role of these RNAs in cell cycle. Our network dynamic modeling showed that higher and lower ethanol-tolerant strains undergo cell cycle arrest in mitosis and G1 phases, respectively, during ethanol stress. The higher population rebound of the lower ethanol-tolerant phenotype after stress relief responds to the late phase arrest. We found that the lncRNA lnc9136 of SEY6210 (a lower ethanol-tolerant strain) induces cells to skip mitosis arrest. Simulating an overexpression of lnc9136 and analyzing CRISPR–Cas9 mutants lacking this lncRNA suggest that lnc9136 induces a regular cell cycle even under ethanol stress, indirectly regulating Swe1p and Clb1/2 by binding to Gin4p and Hsl1p. Notably, lnc10883 of BY4742 (a higher ethanol-tolerant strain) does not prevent G1 arrest in this strain under ethanol stress. However, lnc19883 circumvents DNA and spindle damage checkpoints, maintaining a functional cell cycle by interacting with Mec1p or Bub1p even in the presence of DNA/spindle damage. Overall, we present the first evidence of direct roles for lncRNAs in regulating yeast cell cycle proteins, the dynamics of this system in different ethanol-tolerant phenotypes, and a new yeast cell cycle model.  相似文献   

7.
The morphogenesis checkpoint in budding yeast delays progression through the cell cycle in response to stimuli that prevent bud formation. Central to the checkpoint mechanism is Swe1 kinase: normally inactive, its activation halts cell cycle progression in G2. We propose a molecular network for Swe1 control, based on published observations of budding yeast and analogous control signals in fission yeast. The proposed Swe1 network is merged with a model of cyclin-dependent kinase regulation, converted into a set of differential equations and studied by numerical simulation. The simulations accurately reproduce the phenotypes of a dozen checkpoint mutants. Among other predictions, the model attributes a new role to Hsl1, a kinase known to play a role in Swe1 degradation: Hsl1 must also be indirectly responsible for potent inhibition of Swe1 activity. The model supports the idea that the morphogenesis checkpoint, like other checkpoints, raises the cell size threshold for progression from one phase of the cell cycle to the next.  相似文献   

8.
Protein phosphatase 2A (PP2A) has long been implicated in cell cycle regulation in many different organisms. In the yeast Saccharomyces cerevisiae, PP2A controls cell cycle progression mainly through modulation of cyclin-dependent kinase (CDK) at the G(2)/M transition. However, CDK does not appear to be a direct target of PP2A. PP2A affects CDK activity through its roles in checkpoint controls. Inactivation of PP2A downregulates CDK by activating the morphogenesis checkpoint and, consequently, delays mitotic entry. Defects in PP2A also compromise the spindle checkpoint and predispose the cell to an error-prone mitotic exit. In addition, PP2A is involved in controlling the G(1)/S transition and cytokinesis. These findings suggest that PP2A functions in many stages of the cell cycle and its effect on cell cycle progression is pleiotropic.  相似文献   

9.
We demonstrate that loss-of-function yeast phenotypes are predictable by guilt-by-association in functional gene networks. Testing 1,102 loss-of-function phenotypes from genome-wide assays of yeast reveals predictability of diverse phenotypes, spanning cellular morphology, growth, metabolism, and quantitative cell shape features. We apply the method to extend a genome-wide screen by predicting, then verifying, genes whose disruption elongates yeast cells, and to predict human disease genes. To facilitate network-guided screens, a web server is available .  相似文献   

10.
11.
12.
13.
Mutations impacting specific stages of cell growth and division have provided a foundation for dissecting mechanisms that underlie cell cycle progression. We have undertaken an objective examination of the yeast cell cycle through flow cytometric analysis of DNA content in TetO(7) promoter mutant strains representing 75% of all essential yeast genes. More than 65% of the strains displayed specific alterations in DNA content, suggesting that reduced function of an essential gene in most cases impairs progression through a specific stage of the cell cycle. Because of the large number of essential genes required for protein biosynthesis, G1 accumulation was the most common phenotype observed in our analysis. In contrast, relatively few mutants displayed S-phase delay, and most of these were defective in genes required for DNA replication or nucleotide metabolism. G2 accumulation appeared to arise from a variety of defects. In addition to providing a global view of the diversity of essential cellular processes that influence cell cycle progression, these data also provided predictions regarding the functions of individual genes: we identified four new genes involved in protein trafficking (NUS1, PHS1, PGA2, PGA3), and we found that CSE1 and SMC4 are important for DNA replication.  相似文献   

14.
Qiu W  Neo SP  Yu X  Cai M 《Genetics》2008,180(3):1445-1457
Septins are a family of GTP-binding proteins whose heterooligomeric complex is the basic structural element of the septin filaments found in many eukaryotic organisms. In budding yeast, septins are mainly confined at the mother–daughter junction and are required for cell morphogenesis and division. Septins undergo assembly and disassembly in accordance with the progression of the cell cycle. In this report, we identified the yeast protein Syp1p as a new regulator of septin dynamics. Syp1p colocalizes with septins throughout most of the cell cycle. Syp1p interacts with the septin subunit Cdc10p and can be precipitated by Cdc10p and Cdc12p. In the syp1Δ mutant, both formation of a complete septin ring at the incipient bud site and disassembly of the septin ring in later stages of cell division are significantly delayed. In addition, overexpression of Syp1p causes marked acceleration of septin disassembly. The fluorescence recovery after photobleaching (FRAP) assay further showed that Syp1p promotes septin turnover in different cell cycle stages. These results suggest that Syp1p is involved in the regulation of cell cycle-dependent dynamics of the septin cytoskeleton in yeast.  相似文献   

15.
16.
During the mitotic cell cycle, microtubule depolymerization leads to a cell cycle arrest in metaphase, due to activation of the spindle checkpoint. Here, we show that under microtubule-destabilizing conditions, such as low temperature or the presence of the spindle-depolymerizing drug benomyl, meiotic budding yeast cells arrest in G(1) or G(2), instead of metaphase. Cells arrest in G(1) if microtubule perturbation occurs as they enter the meiotic cell cycle and in G(2) if cells are already undergoing premeiotic S phase. Concomitantly, cells down-regulate genes required for cell cycle progression, meiotic differentiation, and spore formation in a highly coordinated manner. Decreased expression of these genes is likely to be responsible for halting both cell cycle progression and meiotic development. Our results point towards the existence of a novel surveillance mechanism of microtubule integrity that may be particularly important during specialized cell cycles when coordination of cell cycle progression with a developmental program is necessary.  相似文献   

17.
Cyclin-dependent kinases (CDKs) control cell cycle transitions and progression. In addition to their activation via binding to cyclins, CDKs can be activated via binding to an unrelated class of cell cycle regulators termed Speedy/Ringo (S/R) proteins. Although mammals contain at least five distinct Speedy/Ringo homologues, the specific functions of members of this growing family of CDK activators remain largely unknown. We investigated the cell cycle roles of human Speedy/Ringo C in HEK293 cells. Down-regulation of Speedy/Ringo C by RNA interference delayed S and G2 progression whereas ectopic expression had the opposite effect, reducing S and G2/M populations. Double thymidine arrest and release experiments showed that overexpression of Speedy/Ringo C promoted late S phase progression. Using a novel three-color FACS protocol to determine the length of G2 phase, we found that the suppression of Speedy/Ringo C by RNAi prolonged G2 phase by ~30 min whereas ectopic expression of Speedy/Ringo C shortened G2 phase by ~25 min. In addition, overexpression of Speedy/Ringo C disrupted the G2 DNA damage checkpoint, increased cell death and caused a cell cycle delay at the G1-to-S transition. These observations indicate that CDK-Speedy/Ringo C complexes positively regulate cell cycle progression during the late S and G2 phases of the cell cycle.  相似文献   

18.
19.
Lipid phosphates are potent mediators of cell signaling and control processes including development, cell migration and division, blood vessel formation, wound repair, and tumor progression. Lipid phosphate phosphatases (LPPs) regulate the dephosphorylation of lipid phosphates, thus modulating their signals and producing new bioactive compounds both at the cell surface and in intracellular compartments. Knock-down of endogenous LPP2 in fibroblasts delayed cyclin A accumulation and entry into S-phase of the cell cycle. Conversely, overexpression of LPP2, but not a catalytically inactive mutant, caused premature S-phase entry, accompanied by premature cyclin A accumulation. At high passage, many LPP2 overexpressing cells arrested in G(2)/M and the rate of proliferation declined severely. This was accompanied by changes in proteins and lipids characteristic of senescence. Additionally, arrested LPP2 cells contained decreased lysophosphatidate concentrations and increased ceramide. These effects of LPP2 activity were not reproduced by overexpression or knock-down of LPP1 or LPP3. This work identifies a novel and specific role for LPP2 activity and bioactive lipids in regulating cell cycle progression.  相似文献   

20.
We have cloned a yeast gene, SKO1, which in high copy number suppresses lethal overexpression of cAMP-dependent protein kinase. SKO1 encodes a bZIP protein that binds to the CRE motif, TGACGTCA. We found that SKO1 also binds to a CRE-like site in SUC2, a yeast gene encoding invertase which is under positive control by cAMP. A disruption of the SKO1 gene causes a partial derepression of SUC2, indicating that SKO1 is a negative regulator of the SUC2 gene. SKO1 interacts positively with MIG1, a zinc finger protein that mediates glucose repression of SUC2. A kinetic analysis revealed a complex regulation of the SUC2 mRNA in response to glucose. First, MIG1 mediates a rapid and strong repression of SUC2, which is complete within 10 minutes. Second, a MIG1-independent process causes a further slow reduction in the mRNA. Third, in the absence of MIG1, there is also a rapid but transient glucose induction of the SUC2 mRNA. This induction is correlated with a transient loss of SKO1-dependent repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号