首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We used the yeast two-hybrid system to screen for proteins that interact with the C-terminus of the β isoform of the thromboxane A2 receptor (TPβ). This screen identified receptor for activated C-kinase 1 (RACK1) as a new TPβ-interacting protein. Here, we show that RACK1 directly binds to the C-terminus and the first intracellular loop of TPβ. The TPβ–RACK1 association was further confirmed by co-immunoprecipitation studies in HEK293 cells and was not modulated by stimulation of the receptor. We observed that cell surface expression of TPβ was increased when RACK1 was overexpressed, while it was inhibited when endogenous RACK1 expression was knocked down by small interfering RNA. Confocal microscopy confirmed the impaired cell surface expression of TPβ and suggested that the receptors remained predominantly localized in the endoplasmic reticulum (ER) in RACK1-depleted cells. Confocal microscopy also revealed that a transient TPβ–RACK1 association takes place in the ER. The effect of RACK1 on receptor trafficking to the cell surface appears to be selective to some G protein-coupled receptors (GPCRs) because inhibition of RACK1 expression also affected cell surface targeting of the angiotensin II type 1 receptor and CXCR4 but not of β2-adrenergic and prostanoid DP receptors. Our data demonstrate for the first time a direct interaction between RACK1 and a GPCR and identify a novel role for RACK1 in the regulation of the transport of a membrane receptor from the ER to the cell surface.  相似文献   

2.
Abstract: The influence of the adenosine A2A receptor on the A1 receptor was examined in rat striatal nerve terminals, a model for other cells in which these receptors are coexpressed. Incubation of striatal synaptosomes with the A2A receptor agonist 2- p -(2-carboxyethyl)phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS 21680) caused the appearance of a low-affinity binding site for the A1 receptor agonist 2-chloro- N 6-cyclopentyladenosine (CCPA). This effect was blocked by the A2A receptor antagonist ZM241385 and by the protein kinase C inhibitor chelerythrine, but not by the protein kinase A inhibitor N -(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004). The effect was not seen with striatal membranes or with hypotonically lysed synaptosomes. These results demonstrate a protein kinase C-mediated heterologous desensitisation of the A1 receptor by the A2A receptor.  相似文献   

3.
Abstract: The adenosine modulation of glutamate exoeytosis from guinea pig cerebrocortical synaptosomes is investigated. Endogenously leaked adenosine is sufficient to cause a partial tonic inhibition of 4-aminopyridine-evoked glutamate release, which can be relieved by adenosine deaminase. The adenosine A1 receptor is equally effective in mediating inhibition of glutamate exocytosis evoked by 4-aminopyridine (where K+-channel activation would inhibit release) and by elevated KC1 (where K+-channel activation would have no effect), arguing for a central role of Ca2+-channel modulation. In support of this, the plateau phase of depolarization-evoked free Ca2+ elevation is decreased by adenosine with both depolarization protocols. No effect of adenosine agonists is seen on membrane potential in polarized or KC1- or 4-aminopyridine-stimulated synaptosomes. The interaction of protein kinase C with the A1 receptormediated inhibition is examined. Activation of protein kinase C by 4β-phorbol dibutyrate has been shown previously by this laboratory to modulate glutamate release via K+-channel inhibition, and is shown here to have an additional action of decoupling the adenosine inhibition of glutamate exocytosis.  相似文献   

4.
Barbiturates Are Selective Antagonists at A1 Adenosine Receptors   总被引:3,自引:0,他引:3  
Barbiturates in pharmacologically relevant concentrations inhibit binding of (R)-N6-phenylisopropyl[3H]adenosine ([3H]PIA) to solubilized A1 adenosine receptors in a concentration-dependent, stereospecific, and competitive manner. Ki values are similar to those obtained for membrane-bound receptors and are 31 microM for (+/-)-5-(1,3-dimethyl)-5-ethylbarbituric acid [(+/-)-DMBB] and 89 microM for (+/-)-pentobarbital. Kinetic experiments demonstrate that barbiturates compete directly for the binding site of the receptor. The inhibition of rat striatal adenylate cyclase by unlabelled (R)-N6-phenylisopropyladenosine [(R)-PIA] is antagonized by barbiturates in the same concentrations that inhibit radioligand binding. The stimulation of adenylate cyclase via A2 adenosine receptors in membranes from N1E 115 neuroblastoma cells is antagonized only by 10-30 times higher concentrations of barbiturates. It is concluded that barbiturates are selective antagonists at the A1 receptor subtype. In analogy to the excitatory effects of methylxanthines it is suggested that A1 adenosine receptor antagonism may convey excitatory properties to barbiturates.  相似文献   

5.
6.
A1 adenosine receptors from rat brain membranes were solubilized with the zwitterionic detergent 3-[3-(cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized receptors retained all the characteristics of membrane-bound A1 adenosine receptors. A high and a low agonist affinity state for the radiolabelled agonist (R)-N6-[3H]phenylisopropyladenosine([3H]PIA) with KD values of 0.3 and 12 nM, respectively, were detected. High-affinity agonist binding was regulated by guanine nucleotides. In addition agonist binding was still modulated by divalent cations. The solubilized A1 adenosine receptors could be labelled not only with the agonist [3H]PIA but also with the antagonist 1,3-diethyl-8-[3H]phenylxanthine. Guanine nucleotides did not affect antagonist binding as reported for membrane-bound receptors. These results suggest that the solubilized receptors are still coupled to the guanine nucleotide binding protein Ni and that all regulatory functions are retained on solubilization.  相似文献   

7.
The adenosine A1 receptors of sheep brain membranes have been identified by the specific binding of radiolabeled cyclohexyl[3H]adenosine ([3H]CHA). Pretreatment of membranes with periodate-oxidized CHA causes a dose- and time-dependent decrease in the number of binding sites. No decrease occurs when membranes are pretreated with CHA. Binding of [3H]CHA to the remaining sites occurs with the same characteristics as binding to the untreated receptor population.  相似文献   

8.
Abstract: The pH dependency of the binding of ligands to adenosine A2a receptors in rat striatal membranes was examined. For those agonists sensitive to adenosine deaminase a solubilised membrane preparation was used. A two- to fourfold increase in affinity was observed for CGS-21680, 5'- N -ethylcarboxamidoadenosine, adenosine, 3'-deoxyadenosine, 5'-deoxyadenosine, inosine, and N 6-methoxypurine riboside on lowering the ambient pH from 7.0 to 5.5. In contrast, no such pH dependency was observed with 2'-deoxyadenosine, although 2'-methoxyadenosine binding was pH dependent. This effect on the affinity of CGS-21680 was reduced by diethylpyrocarbonate and restored by hydroxylamine and implied a pK value of 7.0 for the histidine residue involved. No such dependence was observed with cyclopentyltheophylline or dimethylpropargylxanthine. It is concluded that one of the histidines conserved in the adenosine receptor binding site acts as a hydrogen bond donor to the oxygen of the 2'-hydroxyl group of adenosine agonists.  相似文献   

9.
10.
Abstract: The influence of pH on the equilibrium dissociation constant and on kinetic association and dissociation constants was studied for adenosine receptor agonist L-N6-[adenine-2,8-3H, ethyl-2-3H]phenylisopropyladenosine ([3H]R-PIA) and antagonist 8-cyclopentyl-1,3-[3H]-dipropylxanthine ([3H]DPCPX). Two ionizable groups, of pK 7.0 and pK 7.4, are involved in the [3H]R-PIA associations with high- and low-affinity states of the receptor, and another group, of pK 6.0, is involved in the association with the low-affinity state. No ionizable group is involved in the dissociation process for the high-affinity state, whereas two ionizable groups, of pK 6.0 and 6.5, are involved in the low-affinity state. For [3H]DPCPX, three ionizable groups (pK 6.0, 7.4, and 8.0) are involved in the association process and only one group, (pK 6.0), is involved in the dissociation step. The apparent pK values obtained agree with histidine residues. We thus studied the effect of diethylpyrocarbonate (DEP), which reacts irreversibly with histidine residues, on agonist and antagonist binding to A1 adenosine receptors from pig brain cortical membranes. DEP treatment of membrane reduced the affinity (KD) and the total binding (R) of the agonist and the antagonist. Membrane preincubation with unlabeled ligand (R-PIA or DPCPX) prevented the effect of DEP modification observed when the same ligand, but with label, is added to the same membranes, but did not prevent the DEP modification on different, labeled ligand. The pattern of protective action of R-PIA, DPCPX, adenosine, and guanylylimidodiphosphate in DEP treatment and the displacement curves of radiolabeled agonist and antagonist by both unlabeled ligands indicated that the interaction site for agonist and antagonist binding is the same, although the complete mechanisms for recognition and binding differ.  相似文献   

11.
Abstract: We have characterized the new potent and selective nonxanthine adenosine A2A receptor antagonist SCH 58261 as a new radioligand for receptor autoradiography. In autoradiographic studies using agonist radioligands for A2A receptors ([3H]CGS 21680) or A1 receptors ( N 6-[3H]cyclohexyladenosine), it was found that SCH 58261 is close to 800-fold selective for rat brain A2A versus A1 receptors ( K i values of 1.2 n M versus 0.8 µ M ). Moreover, receptor autoradiography showed that [3H]SCH 58261, in concentrations below 2 n M , binds only to the dopamine-rich regions of the rat brain, with a K D value of 1.4 (0.8–1.8) n M . The maximal number of binding sites was 310 fmol/mg of protein in the striatum. Below concentrations of 3 n M , the nonspecific binding was <15%. Three adenosine analogues displaced all specific binding of [3H]SCH 58261 with the following estimated K i values (n M ): 2-hex-1-ynyl-5'- N -ethylcarboxamidoadenosine, 3.9 (1.8–8.4); CGS 21680, 130 (42–405); N 6-cyclohexyladenosine, 9,985 (3,169–31,462). The binding of low concentrations of SCH 58261 was not influenced by either GTP (100 µ M ) or Mg2+ (10 m M ). The present results show that in its tritium-labeled form, SCH 58261 appears to be a good radioligand for autoradiographic studies, because it does not suffer from some of the problems encountered with the currently used agonist radioligand [3H]CGS 21680.  相似文献   

12.
Abstract: The regulatory role of A2A adenosine receptors in P2 purinoceptor-mediated calcium signaling was investigated in rat pheochromocytoma (PC12) cells. When PC12 cells were treated with 2- p -(2-carboxyethyl)-phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS-21680), a specific agonist of the A2A adenosine receptor, the extracellular ATP-evoked rise in cytosolic free Ca2+ concentration ([Ca2+]i) was inhibited by 20%. Both intracellular calcium release and inositol 1,4,5-trisphosphate production evoked by ATP were not affected by CGS-21680 treatment. However, ATP-evoked Ca2+ influx was inhibited following CGS-21680 stimulation. The CGS-21680-mediated inhibition occurred independently of nifedipine-induced inhibition of the [Ca2+]i rise. The CGS-21680-induced inhibition was completely blocked by reactive blue 2. The CGS-21680 effect was mimicked by forskolin and dibutyryl-cyclic AMP and blocked by Rp -adenosine 3',5'-cyclic monophosphothioate, a protein kinase A inhibitor, or by staurosporine, a general kinase inhibitor. The data suggest that in PC12 cells activation of A2A adenosine receptors leads to inhibition of P2 purinoceptor-mediated Ca2+ influx through ATP-gated cation channels and involves protein kinase A.  相似文献   

13.
Abstract: Adenosine deaminase is an enzyme of purine metabolism that has largely been considered to be cytosolic. A few years ago, adenosine deaminase was reported to appear on the surface of cells. Recently, it has been demonstrated that adenosine deaminase interacts with a type II membrane protein known as either CD26 or dipeptidylpeptidase IV. In this study, by immunoprecipitation and affinity chromatography it is shown that adenosine deaminase and A1 adenosine receptors interact in pig brain cortical membranes. This is the first report in brain demonstrating an interaction between a degradative ectoenzyme and the receptor whose ligand is the enzyme substrate. By means of this interaction adenosine deaminase leads to the appearance of the high-affinity site of the receptor, which corresponds to the receptor-G protein complex. Thus, it seems that adenosine deaminase is necessary for coupling A1 adenosine receptors to heterotrimeric G proteins.  相似文献   

14.
Abstract: The effects of adenosine analogues on phosphoinositide metabolism in rat sciatic nerve were examined. Sciatic nerve segments were prelabeled with [3H]-cytidine and incubated in the presence of LiCl and varying concentrations of adenosine analogues. The formation of [3H]cytidine monophosphate phosphatidic acid ([3H]-CMP-PA) was determined as an index of phosphoinositide breakdown. Liponucleotide accumulation was elevated significantly in the presence of 5'- N -ethylcarboxamidoadenosine (NECA), a nonselective analogue, and two different A2-selective analogues, N 6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine and 2- p -(2-carboxyethyl)phenethylamino-NECA (CGS 21680), but not by N 6-cyclopentyladenosine, an A1-selective analogue. The stimulatory action of CGS 21680 was blocked by the A2-selective adenosine receptor antagonists 3,7-dimethyl-1-propargylxanthine (DMPX) and 1,3-dipropyl-7-methylxanthine. Inositol phosphate formation was also stimulated to a comparable degree by CGS 21680 and this response was antagonized by DMPX. Carbamylcholine, which was previously shown to stimulate phosphoinositide breakdown, also enhanced the accumulation of CMP-PA. When adenosine analogues and carbamylcholine were simultaneously present, their effects were additive. Taken together, these data suggest that an adenosine receptor, possibly of the A2 subtype, is coupled to enhanced phosphoinositide hydrolysis in peripheral nerve. However, adenosine-receptor activation does not appear to modulate phosphoinositide hydrolysis stimulated via muscarinic receptors.  相似文献   

15.
Abstract: Previous work from this laboratory has shown that retinal adenosine A2 binding sites are localized over outer and inner segments of photoreceptors in rabbit and mouse retinal sections. In the present study, adenosine receptor binding has been characterized and localized in membranes from bovine rod outer segments (ROS). Saturation studies with varying concentrations (10–150 nM) of 5′-(N-[2,8-3H]ethylcarboxamido)adenosine ([3H]NECA) and 100 μg of ROS membrane protein show a single site with a KD of 103 nM and a Bmax of 1.3 pM/mg of protein. Cold Scatchards, which used nonradiolabeled NECA (concentrations ranging from 10 nM to 250 nM) in competition with a fixed amount of [3H]NECA (30 nM), demonstrated the presence of a low-affinity site (KD, 50 μM) in addition to the high-affinity site. To confirm the presence of A2abinding sites, saturation analyses with 2-p-(2-[3H]-carboxyethyl)phenylamino-5′-N-ethylcarboxamido adenosine (0–80 nM) also revealed a single population of high-affinity A2a receptors (KD, 9.4 nM). The binding sites labeled by [3H]NECA appear to be A2 receptor sites because binding was displaced by increasing concentrations of 5′-(N-methylcarboxamido)adenosine and 2-chloroadenosine. ROS were fractionated into plasma and disk membranes for localization studies. Receptor binding assays, used to determine specific binding, showed that the greatest concentration of A2 receptors was on the plasma membranes. Therefore, adenosine A2 receptors are in a position to respond to changes in the concentration of extracellular adenosine, which may exhibit a circadian rhythm.  相似文献   

16.
Abstract: Identification of A1 adenosine receptors (A1Rs) in a tumor cell line derived from rat pituitary (GH4 cells) was performed by ligand binding and immunological experiments. Subsequently, the involvement of A1Rs in the regulation of calcium conductance was studied in these cells. The agonist N 6-( R )-(2-phenylisopropyl)adenosine ( R -PIA) did not modify the intracellular calcium basal levels, whereas it inhibited the increase produced by 15 m M KCl depolarization. The antagonist 1,3-dipropyl-8-cyclopentylxanthine led to the opening of voltage-dependent cell surface calcium channels in the absence of exogenous KCl. The channels were of the L type because the effect was abolished by calciseptine and by verapamil. These results suggest that endogenous adenosine exerts a tonic inhibitory effect on calcium transport. This was confirmed by the high adenosine concentration found in cell supernatants (up to 1 µ M ) and by the calcium mobilization produced by exogenously added adenosine deaminase. In depolarizing conditions, the calcium peak in the presence of adenosine deaminase was reduced when cells were preincubated with R -PIA, thus suggesting that A1R activation regulates the intensity of depolarization. These results demonstrate that adenosine is an important regulator of the physiological state of pituitary tumor cells by modulating, in an autocrine manner, the activity of L-type voltage-dependent calcium channels.  相似文献   

17.
Abstract: The role of the A2A adenosine receptor in regulating voltage-sensitive calcium channels (VSCCs) was investigated in PC12 cells. Ca2+ influx induced by membrane depolarization with 70 m M K+ could be inhibited with CGS21680, an A2A receptor-specific agonist. Both L- and N-type VSCCs were inhibited by CGS21680 treatment. Effects of adenosine receptor agonists and antagonists indicate that the typical A2A receptor mediates inhibition of VSCCs. Cholera toxin (CTX) treatment for 24 h completely eliminated the CGS21680 potency. Similar inhibitory effects on VSCCs were obtained by membrane-permeable activators of protein kinase A (PKA). These effects were blocked by Rp -adenosine-3',5'-cyclic monophosphothioate, a PKA inhibitor. The data suggest that activation of the A2A receptor leads to inhibition of VSCCs via a CTX-sensitive G protein and PKA. ATP pretreatment caused a reduction in subsequent rise in cytosolic free Ca2+ concentration induced by 70 m M K+, presumably by inactivation of VSCCs. Simultaneous treatment with ATP and CGS21680 produced significantly greater inhibition of VSCCs than treatment with CGS21680 or ATP alone. Furthermore, the CGS21680-induced inhibition of VSCCs was not affected by the presence of reactive blue 2. CGS21680 still significantly inhibited ATP-evoked Ca2+ influx without VSCC activity after cobalt or 70 m M K+ pretreatment. These data suggest that the A2A receptor-sensitive VSCCs differ from those activated by ATP treatment. Although A2A receptors induce inhibition of VSCCs as well as ATP-induced Ca2+ influx, the two inhibitory effects are clearly distinct from each other.  相似文献   

18.
Abstract: Adenosine A1 receptors as well as other components of the adenylate cyclase system have been studied in cultured cerebellar granule cells. No significant changes in adenosine A1 receptor number, assayed by radioligand binding in intact cells, were detected from 2 days in vitro (DIV) until 7 DIV. Nevertheless, a decline in this parameter was detected at 9 DIV. The steady-state levels of α-Gs and α-Gi, detected by immunoblotting, showed similar profiles, increasing from 2 to 5 DIV and decreasing afterward. Forskolin-stimulated adenylate cyclase levels also showed an increase until 5 DIV, decreasing at 7 and 9 DIV. The adenosine A1 receptor analogue cyclopentyladenosine (CPA) was able to inhibit cyclic AMP accumulation at 2, 5, and 7 DIV but failed to do so at 9 DIV. This inhibition was prevented by the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The presence of adenosine deaminase in the culture increased adenosine A1 receptor number during the period studied and induced recovery of the inhibitory effect of CPA, lost after 7 DIV. These data suggest that functional expression of adenosine A1 receptors and the other components of the adenylate cyclase system is subjected to regulation during the maturation of cultured cerebellar granule cells and demonstrates a key role for endogenous adenosine in the process.  相似文献   

19.
Preincubation of D384 cells, derived from the human astrocytoma cell line G-CCM, with dopamine resulted in a time-dependent attenuation of cyclic AMP responsiveness to subsequent dopamine stimulation. This effect was agonist specific because the prostaglandin E1 (PGE1) stimulation of cyclic AMP of similarly treated cells remained unchanged. The attenuation by dopamine was concentration dependent with a maximum observed at 100 microM. A comparison of dopamine concentration-response curves of control and dopamine-preincubated cells revealed no change in the Ka apparent value, but a marked attenuation of the maximal response. Preincubation of cells with dopamine in the presence of D1 but not D2 selective antagonists partially prevented the observed attenuation. Attenuations in dopamine responsiveness were also obtained when D384 cells were preincubated with D1 but not D2 receptor agonists. The level of attenuation attained related to agonist efficiency in stimulating cyclic AMP: SKF38393 less than 3,4-dihydroxynomifensine less than fenoldopam less than 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene = dopamine. However, increasing the efficiency of 3,4-dihydroxynomifensine stimulation of cyclic AMP, using the synergistic effect of adding a low concentration of forskolin, produced no further change in the attenuation of the subsequent response to dopamine. Thus, the D1 dopamine receptors expressed by D384 cells undergo homologous desensitization. Uncoupling of the D1 dopamine receptor appears to be independent of cyclic AMP formation, analogous to a mechanism proposed for the beta-adrenergic receptor.  相似文献   

20.
Abstract: The modulation by adenosine analogues and endogenous adenosine of the electrically evoked release of [3H]acetylcholine ([3H]ACh) was compared in subslices of the three areas of the rat hippocampus (CA1, CA3, and dentate gyrus). The mixed A1/A2 agonist 2-chloroadenosine (CADO; 2–10 µM) inhibited, in a concentration-dependent manner, the release of [3H]ACh from the three hippocampal areas, being more potent in the CA1 and CA3 areas than in the dentate gyrus. The inhibitory effect of CADO (5 µM) on [3H]ACh release was prevented by the A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 50 nM) in the three hippocampal areas and was converted in an excitatory effect in the CA3 and dentate gyrus areas. The A2A agonist CGS-21680 (30 nM) produced a greater increase of the evoked release of [3H]ACh in the CA3 than in the dentate gyrus areas, whereas no consistent effect was found in the CA1 area or in the whole hippocampal slice. The excitatory effect of CGS-21680 (30 nM) in the CA3 area was prevented by the adenosine receptor antagonist 3,7-dimethyl-1-propargylxanthine (10 µM). Both adenosine deaminase (2 U/ml) and DPCPX (250 nM) increased the evoked release of [3H]ACh in the CA1 and CA3 areas but not in the dentate gyrus. The amplitude of the effect of DPCPX and adenosine deaminase was similar in the CA1 area, but in the CA3 area DPCPX produced a greater effect than adenosine deaminase. It is concluded that the electrically evoked release of [3H]ACh in the three areas of the rat hippocampus can be differentially modulated by adenosine. In the CA1 area, only A1 inhibitory receptors modulate ACh release, whereas in the CA3 area, both A2A excitatory and A1 inhibitory adenosine receptors modulate ACh release. In the dentate gyrus, both A1 inhibitory and A2A excitatory adenosine receptors are present, but endogenous adenosine does not activate them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号