首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 584 毫秒
1.
New thiolytically cleavable dithiobenzyl (DTB) urethane-linked conjugates of methoxypoly(ethylene glycol) (mPEG) and a model protein, lysozyme, were prepared and thoroughly characterized. In contrast to our earlier communication [Zalipsky, et al. (1999) Bioconjugate Chem. 10, 703], in the current study we used a more sterically hindered form of para-DTB urethane linkage containing a methyl group on the alpha-carbon to the disulfide moiety. The new reagent for covalent attachment of mPEG-DTB to amino groups of proteins was synthesized via a seven-step process. As a result of PEG conjugation, the lysozyme was shown to completely lose its bacterial cell wall-lysing activity. However, activity was almost fully restored upon cysteine-mediated cleavage of the PEG component. The conjugate decomposition process was monitored by RP-HPLC and by ion spray LC-MS, which showed the formation of the p-mercaptobenzyl urethane-lysozyme intermediate, and ultimately its conversion to the unmodified lysozyme as the sole protein component. Pharmacokinetic evaluation of (125)I-labeled cleavable and noncleavable PEG-lysozyme given intravenously in rats revealed similar clearance patterns; both cleared in a significantly slower manner compared to that of the native protein. However, subcutaneous administration of the same conjugates showed a significantly larger AUC of the cleavable conjugate, indicating that some cleavage of the DTB urethane may have occurred. Although the DTB-linked PEG-lysozyme exhibited almost the same plasma clearance as the noncleavable counterpart, hinting that methyl-DTB linkage might be stable in the bloodstream, SDS-PAGE examination of the conjugate incubated in plasma showed decomposition at least partially mediated by albumin. These results suggest the potential of PEG-DTB-proteins as macromolecular prodrugs capable of generating fully active native proteins under in vivo conditions.  相似文献   

2.
Hen egg-white lysozyme was modified with a succinyl ester derivative of monomethoxypolyethylene glycol (mPEG-COONSu), and some properties of the resulting conjugate (mPEG-lysozyme) were studied. The conjugate was prepared by modification of lysozyme with mPEG-COONSu and purified with use of columns of CM-Toyopearl 650M and Sephadex G-75. Analytical data indicated that in the conjugate, 1.05 moles of mPEG with an average molecular weight of 5,000 were covalently attached to the lysozyme molecule. Tryptic peptide analysis of the conjugate showed that Lys 33 in lysozyme is the residue mainly modified with mPEG-COONSu. Covalent attachment of the mPEG-derivative to amino groups greatly increased the thermostability of lysozyme without any conformational change of the protein molecule. mPEG-lysozyme retained full enzyme activity for glycol chitin, but lytic activity for Micrococcus luteus cells in neutral media was 75% of that of native lysozyme and its optimal pH was at pH 5.0. It was also found that the reactivity of lysozyme with anti-lysozyme antibody from BALB/c mice or human lymphocytes was decreased by modification with mPEG-COONSu. From these findings, it was suggested that mPEG-COONSu can be advantageously used for protein tailoring of lysozyme.  相似文献   

3.
Both ubiquitin conjugation and ubiquitin-dependent degradation of chicken egg white lysozyme in a reticulocyte lysate depend on the presence of a reducing agent. We present evidence that the reduction of a specific disulfide bond, namely that at Cys6-Cys127, facilitates ubiquitination and is a prerequisite to the formation of a multiubiquitin chain on one of at least four chain initiation sites on lysozyme. The Cys6-Cys127 disulfide bond in lysozyme can be specifically reduced, and the modified protein can be isolated after carboxymethylation of the 2 resulting cysteines. This modified lysozyme no longer requires the presence of a reducing agent for ubiquitin conjugation and degradation. Inhibition of ubiquitination by the dipeptide Lys-Ala revealed that this modified lysozyme, like the unmodified protein, is recognized via the binding of the ubiquitin protein ligase, E3, to the substrate's N-terminal lysyl residue. Both the rate and the extent of ubiquitin-lysozyme conjugation, however, are significantly higher with this modified substrate. Likewise, ubiquitin-dependent degradation of 6,127-reduced/carboxymethylated lysozyme was 2-4-fold faster than degradation of the unmodified counterpart. These results are consistent with an interpretation that the modified lysozyme mimics an intermediate formed at the rate-limiting step of the degradation of lysozyme in the reticulocyte lysate. Reduction of the Cys6-Cys127 disulfide bond is expected to unhinge the N-terminal region of lysozyme, and we propose that the recognition of this otherwise stable protein by the ubiquitin pathway is due to facilitated binding of E3 that results from such a conformational transition.  相似文献   

4.
Reduction of lysozyme by diborane, followed by air oxidation of the reduced disulfides and chromatography on CM-cellulose, yielded a homogeneous derivative. In the derivative, the carboxyl groups of aspartic acid 119 and the end-chain leucine residue were reduced to their corresponding alcohols. Correct re-forming of the disulfide bonds was demonstrated by peptide mapping of the tryptic hydrolysates of the derivative and lysozyme without breaking the disulfide bonds, followed by identification of the disulfide-containing peptides. Correct disulfide pairing in the two-disulfide peptide in the tryptic hydrolysate was established from its immunochemical behavior. Preparations of the two-disulfide fragment from lysozyme and derivative had equal inhibitory activities (26 or 32%) of the reaction of lysozyme with two homologous antisera. In ORD measurements, lysozyme and the derivative had equal rotatory powers at neutral pH. However, the bo value for the derivative decreased by about 10%. Below pH 6.4 and above pH 8.0, the derivative was less rotatory than native lysozyme. In CD measurements at neutral pH, the negative ellipticity bands at 220 and 208 nm showed little or no decrease in the derivative relative to the native protein. Although conformational differences between the derivative and its parent protein were almost undetectable by ORD and CD measurements, they were readily detected by chemical monitoring of the conformation. In the derivative, both accessibility to tryptic hydrolysis and reducibility of the disulfide bonds increased markedly. The enzymic activity of the derivative was decreased but retained the same pH optimum. With antisera to lysozyme or antisera to the derivative, lysozyme and its derivative possessed equal antigenic reactivities. The immunochemical findings further confirm the correct refolding of the disulfides. Also, they indicate that aspartic acid 119 and the C-terminal leucine residue are not part of an antigenic reactive region in lysozyme.  相似文献   

5.
Poly(D-lysine) is taken up avidly by cultured cells through adsorptive endocytosis and can serve as a carrier to increase cellular uptake of other molecules. While direct conjugation of methotrexate to poly(D-lysine) yields a conjugate devoid of cytotoxic effects because poly(D-lysine) is not digested in lysosomes, the indirect conjugation using a triglycine spacer or a disulfide spacer strongly inhibits the growth of both the wild type and the methotrexate transport-defective Chinese hamster ovary cells. Cell treatment with 3 mM NH4Cl or 50 micrograms/ml leupeptin prevents the effect of conjugate with the triglycine spacer, but not of conjugate with the disulfide spacer. On the other hand, preincubation with 2-mercaptoethanol abolishes the effect of the drug-disulfide conjugate in the methotrexate transport-defective mutant, but not the effect of the drug-triglycine conjugate. The disulfide conjugate shows an identical cytotoxic effect in alpha-minimal essential medium and RPMI 1640 media, even though cells grown in the latter have only half the glutathione content as cells grown in the former medium. We conclude that the reductive process through which methotrexate is released from the disulfide spacer (a) occurs inside cells and not at the cell surface, (b) requires neither acid pH nor lysosomal enzymes, and (c) is not mediated by a glutathione-disulfide exchange reaction requiring high glutathione concentrations. Although the cellular compartment in which this reductive process occurs is not yet identified, there are reasons to assume that it is prelysosomal.  相似文献   

6.
Using lysozyme as a representative protein substrate that loses its activity when PEGylation takes place on the epsilon-amino group of lysine residues, various amounts of a novel releasable PEG linker (rPEG) were conjugated to the protein. rPEG-lysozyme conjugates were relatively stable in pH 7.4 buffer for over 24 h. However, regeneration of native protein from the rPEG conjugates occurred in a predictable manner during incubation in high pH buffer or rat plasma, as demonstrated by enzymatic activity and structural characterization. The rates of regeneration were also correlated with PEG number: native lysozyme was released more rapidly from the monosubstituted conjugate than from the disubstituted conjugate, suggesting possible steric hindrance to the approach of cleaving enzymes. Recovery of normal activity and structure for the regenerated native lysozyme was shown by a variety of assays.  相似文献   

7.
L J Perry  R Wetzel 《Biochemistry》1986,25(3):733-739
We have introduced an intramolecular disulfide bond into T4 lysozyme and have shown this molecule to be significantly more stable than the wild-type molecule to irreversible thermal inactivation [Perry, L.J., & Wetzel, R. (1984) Science (Washington, D.C.) 226, 555-557]. Wild-type T4 lysozyme contains two free cysteines, at positions 54 and 97, and no disulfide bonds. By directed mutagenesis of the cloned T4 lysozyme gene, we replaced Ile-3 with Cys. Oxidation in vitro generated an intramolecular disulfide bond; proteolytic mapping showed this bond to connect Cys-3 to Cys-97. While this molecule exhibited substantially more stability against thermal inactivation than wild type, its stability was further enhanced by additional modification with thiol-specific reagents. This and other evidence suggest that at basic pH and elevated temperatures Cys-54 is involved in intermolecular thiol/disulfide interchange with the engineered disulfide, leading to inactive oligomers. Mutagenic replacement of Cys-54 with Thr or Val in the disulfide-cross-linked variant generated lysozymes exhibiting greatly enhanced stability toward irreversible thermal inactivation.  相似文献   

8.
The influence of enzyme polysaccharide interaction on enzyme stability and activity was elucidated by covalently binding dextran to a model enzyme, α-amylase. The conjugation process was optimized with respect to concentration of oxidizing agent, pH of enzyme solution, ratio of dextran to enzyme concentration, temperature and time of conjugate formation, and was found to affect the stability of α-amylase. α-Amylase conjugated under optimized conditions showed 5% loss of activity but with enhanced thermal and pH stability. Lower inactivation rate constant of conjugated α-amylase within the temperature range of 60-80°C implied its better stability. Activation energy for denaturation of α-amylase increased by 8.81kJ/mol on conjugation with dextran. Analysis of secondary structure of α-amylase after covalent binding with dextran showed helix to turn conversion without loss of functional properties of α-amylase. Covalent bonding was found to be mandatory for the formation of conjugate.  相似文献   

9.
Catalytic properties of hen egg white lysozyme were analyzed during the renaturation of the enzyme from completely reduced and denatured material. The formation of intermediate folding products and the generation of native lysozyme was monitored by acetic acid/urea electrophoresis. The results showed that during the beginning of renaturation almost all reduced and denatured lysozyme is converted to forms possessing lower compactness than native lysozyme, probably as a result of formation of only one or two disulfide bonds. Kinetic analysis of lysozyme during renaturation showed that the generation of lysozyme with four disulfide bonds was not necessarily equivalent to the formation lysozyme with native-like catalytic properties. It appeared that the formation rate of the structures of the structures of the substrate binding site and of the catalytic site were limited by the generation of four disulfide bonds containing lysozyme. The catalytic properties of intermediate folding products made it evident that the final structures of the substrate binding site and of the catalytic site were formed after the generation of all disulfide bonds.  相似文献   

10.
The engineered disulfide bridge between residues 21 and 142 of phage T4 lysozyme spans the active-site cleft and can be used as a switch to control the activity of the enzyme (Matsumura, M. & Matthews, B.W., 1989, Science 243, 792-794). In the oxidized form the disulfide increases the melting temperature of the protein by 11 degrees C at pH 2. The crystal structure of this mutant lysozyme has been determined in both the reduced and oxidized forms. In the reduced form, the crystal structure of the mutant is shown to be extremely similar to that of wild type. In the oxidized form, however, the formation of the disulfide bridge causes the alpha-carbons of Cys 21 and Cys 142, on opposite sides of the active-site cleft, to move toward each other by 2.5 A. In association with this movement, the amino-terminal domain of the protein undergoes a rigid-body rotation of 5.1 degrees relative to the carboxy-terminal domain. This rotation occurs about an axis passing through the junction of the amino-terminal and carboxy-terminal domains and is also close to the axis that best fits the apparent thermal motion of the amino-terminal domain seen previously in crystals of wild-type lysozyme. Even though the engineered Cys 21-Cys 142 disulfide links together the amino-terminal and carboxy-terminal domains of T4 lysozyme, it does not reduce the apparent mobility of the one domain relative to the other. The pronounced "hinge-bending" mobility of the amino-terminal domain that is suggested by the crystallographic thermal parameters of wild-type lysozyme persists in the oxidized (and reduced) mutant structures. In the immediate vicinity of the introduced disulfide bridge the mutant structure is more mobile (or disordered) than wild type, so much so that the exact conformation of Cys 21 remains obscure. As with the previously described disulfide bridge between residues 9 and 164 of T4 lysozyme (Pjura, P.E., Matsumura, M., Wozniak, J.A., & Matthews, B.W., 1990, Biochemistry 29, 2592-2598), the engineered cross-link substantially enhances the stability of the protein without making the folded structure more rigid.  相似文献   

11.
The disulfide peptides from the tryptic digestion of cyanogen bromide-treated hen egg white lysozyme (HEWL) were isolated by reverse phase high performance liquid chromatography (HPLC) and identified by amino acid analysis. Three peptides containing the I-VIII, II-VII, and III-V + IV-VI disulfide bonds were obtained. The two-disulfide peptide was further digested with proline-specific endopeptidase (PCE) (EC 3.4.21.26). Amino acid analysis of digest peptides separated by HPLC showed four peptides with the IV-VI disulfide bond as well as a peptide with the III-V disulfide bond. The IV-VI peptides were produced by hydrolysis of several alanine-X bonds as well as the prolyl-cystine bond. Our studies show that alanyl peptide bonds to lysyl, seryl, and leucyl residues are susceptible to hydrolysis by PCE preparations, thus substantially extending its known specificity range. The two-disulfide peptide was also digested sequentially with thermolysin and PCE; the resulting IV-VI and III-V peptides were identified by HPLC and amino acid analysis. PCE showed substantial activity at pH 5.3 as well as at pH 8.3. The lower pH is useful in studies of proteins or peptides where base-catalyzed reactions must be limited.  相似文献   

12.
A small peptide–keyhole limpet hemocyanin (KLH) conjugate is generally used as an antigen for producing specific antibodies. However, preparation of a disulfide-rich heterodimeric peptide–KLH conjugates is difficult. In this study, we developed a novel method for preparation of the conjugate, and applied it to the production of specific antibodies against the relaxin-like gonad-stimulating peptide (RGP) from the starfish. In this method, a sulfanyl group necessary for the conjugation with KLH was site-specifically introduced to the peptide after regioselective disulfide bond formation reactions. Using the conjugate, we could obtain specific antibodies with a high antibody titer. This method might also be useful for the production of antibodies against other heterodimeric peptides with disulfide cross-linkages, such as vertebrate relaxins.  相似文献   

13.
In this report, we describe the synthesis of a panel of disulfide-linked huC242 (anti-CanAg) antibody maytansinoid conjugates (AMCs), which have varying levels of steric hindrance around the disulfide bond, in order to investigate the relationship between stability to reduction of the disulfide linker and antitumor activity of the conjugate in vivo. The conjugates were first tested for stability to reduction by dithiothreitol in vitro and for plasma stability in CD1 mice. It was found that the conjugates having the more sterically hindered disulfide linkages were more stable to reductive cleavage of the maytansinoid in both settings. When the panel of conjugates was tested for in vivo efficacy in two human colon cancer xenograft models in SCID mice, it was found that the conjugate with intermediate disulfide bond stability having two methyl groups on the maytansinoid side of the disulfide bond and no methyl groups on the linker side of the disulfide bond (huC242-SPDB-DM4) displayed the best efficacy. The ranking of in vivo efficacies of the conjugates was not predicted by their in vitro potencies, since all conjugates were highly active in vitro, including a huC242-SMCC-DM1 conjugate with a noncleavable linkage which showed only marginal activity in vivo. These data suggest that factors in addition to intrinsic conjugate potency and conjugate half-life in plasma influence the magnitude of antitumor activity observed for an AMC in vivo. We provide evidence that bystander killing of neighboring nontargeted tumor cells by diffusible cytotoxic metabolites produced from target cell processing of disulfide-linked antibody-maytansinoid conjugates may be one additional factor contributing to the activity of these conjugates in vivo.  相似文献   

14.
The toxic subunit of a plant ricin has been conjugate by a disulfide bond to a polyclonal rabbit antibody specific for the L-chain of human IgG. Both the antibody and ricin A-chain retained their original biological activity after conjugation. This conjugate proved to be a potent cytotoxin for surface Ig positive Burkitt lymphoma EB-3 cells, growing in vitro and produced 50% inhibition of protein synthesis at level of 1.4 x 10(-9) M. When tested for cytotoxic action on target cells, the composite conjugate molecule was at least 100 times more effective than antibodies alone, ricin A-chain alone or a conjugate ricin A-chain--normal rabbit IgG.  相似文献   

15.
The aim of the study was to observe the effects of dibutyrylchitin (DBC) on the repair processes and to explain the mechanisms of its action in comparison with other dressing materials made of butyrylchitin (BC), regenerated chitin (RC), and chitosan. The results showed that DBC implanted subcutaneously to the rats increased weight of the granulation tissue. Increased cell number isolated from the wound and cultured on the DBC films was also revealed. The DBC was proved to reduce also the necrotic cells number in the culture. DBC elevates the glycosaminoglycans (GAG) level in the granulation tissue. The total collagen content in the wound was not influenced by all applied dressing materials. However, a low level of the poorly polymerized soluble collagen in the wounds treated with DBC and BC indicated better polymerization of the remaining part of that protein. Both DBC and chitosan increased the weight of granulation tissue. However, chitosan contrary to DBC lowered GAG content and increased water capacity in the wound. The study documents the beneficial influence of DBC on the repair, which could be explained by the modification of the extracellular matrix and cells number. The best effects were observed after application of DBC with [eta] DBC-1 = 1.75 dL/g.  相似文献   

16.
Arginine-rich cell-penetrating peptides have found excellent utility in cell and in vivo models for enhancement of delivery of attached charge-neutral PNA or PMO oligonucleotides. We report the synthesis of dendrimeric peptides containing 2- or 4-branched arms each having one or more R-Ahx-R motifs and their disulfide conjugation to a PNA705 splice-redirecting oligonucleotide. Conjugates were assayed in a HeLa pLuc705 cell assay for luciferase up-regulation and splicing redirection. Whereas 8-Arg branched peptide-PNA conjugates showed poor activity compared to a linear (R-Ahx-R)(4)-PNA conjugate, 2-branched and some 4-branched 12 and 16 Arg peptide-PNA conjugates showed activity similar to that of the corresponding linear peptide-PNA conjugates. Many of the 12- and 16-Arg conjugates retained significant activity in the presence of serum. Evidence showed that biological activity in HeLa pLuc705 cells of the PNA conjugates of branched and linear (R-Ahx-R) peptides is associated with an energy-dependent uptake pathway, predominantly clathrin-dependent, but also with some caveolae dependence.  相似文献   

17.
The role of the two disulfide bonds (Cys4-Cys60 and Cys18-Cys29) in the activity and stability of goose-type (G-type) lysozyme was investigated using ostrich egg-white lysozyme as a model. Each of the two disulfide bonds was deleted separately or simultaneously by substituting both Cys residues with either Ser or Ala. No remarkable differences in secondary structure or catalytic activity were observed between the wild-type and mutant proteins. However, thermal and guanidine hydrochloride unfolding experiments revealed that the stabilities of mutants lacking one or both of the disulfide bonds were significantly decreased relative to those of the wild-type. The destabilization energies of mutant proteins agreed well with those predicted from entropic effects in the denatured state. The effects of deleting each disulfide bond on protein stability were found to be approximately additive, indicating that the individual disulfide bonds contribute to the stability of G-type lysozyme in an independent manner. Under reducing conditions, the thermal stability of the wild-type was decreased to a level nearly equivalent to that of a Cys-free mutant (C4S/C18S/C29S/C60S) in which all Cys residues were replaced by Ser. Moreover, the optimum temperature of the catalytic activity for the Cys-free mutant was downshifted by about 20 degrees C as compared with that of the wild-type. These results indicate that the formation of the two disulfide bonds is not essential for the correct folding into the catalytically active conformation, but is crucial for the structural stability of G-type lysozyme.  相似文献   

18.
The procedures for the conjugation of rabbit IgG and Fab' antibodies with beta-D-galactosidase from Escherichia coli using N,N'-o-phenylenedimaleimide were improved in several respects as compared with the previous methods (Eur. J. Biochem. 62, 285--292, 1976; J. Immunol. 116, 1554--1560, 1976). Maleimide residues were efficiently introduced into antibodies under an atmosphere of nitrogen; the average number of maleimide residues introduced into IgG and Fab' antibodies were 0.78 (0.65--0.86) and 0.86 (0.80--0.95) per molecule, respectively. The conjugation with the enzyme was performed at 4 degrees C at pH 6.5 for 15 or more hours. The conjugates were almost completely separated from unreacted IgG and Fab' by gel filtration. When the recoveries of IgG, Fab', and beta-D-galactosidase in the conjugates were 23-29, 35-44, and 99%, respectively, the average numbers of IgG and Fab' molecules conjugated with the enzyme were 1.5-1.7 and 2.1-2.8 per molecule, respectively. There was no significant impairment of beta-D-galactosidase activity or the activity of anti-human IgG antibody to bind to human IgG upon conjugation. However, the conjugate preparation was heterogeneous, and one-third of each preparation consisted of aggregated conjugates less useful in sandwich enzymoimmunoassay than the remaining material. The conjugate with Fab' antibody gave lower control values in sandwich enzymoimmunoassay with silicone rubber as a solid phase than that with IgG antibody.  相似文献   

19.
Bovine beta-lactoglobulin (BLG) was conjugated with cationic saccharides to improve its functions. We used a polylysine-dextran conjugate (PL-Dex) as the cationic saccharide which had been prepared by the Maillard reaction. The molar ratio of PL:Dex was 1:1. The emulsifying property of PL in the acidic pH range was improved by conjugating with Dex. BLG and PL-Dex were conjugated by using microbial transglutaminase (MTGase), the effective conjugation being confirmed by SDS-PAGE. The molar ratio of BLG:PL-Dex was 1:1. Structural analyses by a fluorescence study, ELISA with monoclonal antibodies and measurement of the retinol-binding activity indicated that the conjugates had almost retained the native structure of BLG. The emulsifying property of BLG in the acidic pH range and in the presence of NaCl was improved by conjugating with PL-Dex. The immunogenicity of BLG was reduced by this conjugation, while the antigenicity of the BLG-PL-Dex conjugate was similar to that of BLG in BALB/c mice.  相似文献   

20.
To target the nucleus of specific cells, trifunctional radiopharmaceuticals are required. We have synthesized acridine orange derivatives which comprise an imidazole-2-carbaldehyde function for coordination to the [Re(CO)?](+) or [(99m)Tc(CO)?](+) core. Upon coordination, this aldehyde is activated and rapidly forms imines with amines from biological molecules. This metal-mediated imine formation allows for the conjugation of a nuclear targeting portion with a specific cell receptor binding function directly on the metal. With this concept, we have conjugated the acridine orange part to a bombesin peptide directly on the (99m)Tc core and in one step. In addition, a linker containing an integrated disulfide has been coupled to bombesin. LC/MS study showed that the disulfide was reductively cleaved with a 60 min half-life time. This concept enables the combination of a nucleus targeting agent with a specific cell receptor molecule directly on the metal without the need of separate conjugation prior to labeling, thus, a modular approach. High uptake of the BBN conjugate into PC-3 cells was detected by fluorescence microscopy, whereas uptake into B16BL6 cells was negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号