首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Although [3H]imipramine is a selective radioligand for the 5-hydroxytryptamine (5-HT) transporter in human platelets, its affinity for binding to the 5-HT transporter complex at 0 degrees C (0.6 nM) is significantly higher than its potency for inhibition of [3H]5-HT uptake at the physiological temperature of 37 degrees C (Ki = 29 nM). As this apparent discrepancy could be related to the assay temperature, we studied the thermodynamics of drug interaction with the 5-HT transporter at assay temperatures between 0 degrees C and 37 degrees C, using as radioligands [3H]imipramine (0 degrees C and 20 degrees C) and [3H]paroxetine (20 degrees C and 37 degrees C), a newly available probe for the 5-HT transporter. At 20 degrees C, Ki values of 14 tricyclic and nontricyclic drugs for inhibition of [3H]imipramine and [3H]paroxetine binding to human platelet membranes were highly significantly correlated (r = 0.98, p less than 0.001), validating the use of these two radioligands to study the 5-HT transporter over a temperature range larger than was previously possible with [3H]imipramine alone. The affinity of imipramine for the 5-HT transporter is progressively enhanced with decreasing incubation temperature, thus favoring the selectivity of [3H]imipramine for the 5-HT transporter at 0 degrees C. At 37 degrees C, the Ki of imipramine for inhibition of [3H]paroxetine binding is 32 nM, and equals its Ki value for inhibition of 5-HT uptake into human platelets. With the exception of chlorimipramine, other tricyclic 5-HT uptake inhibitors showed a temperature sensitivity in their interaction with the 5-HT transporter similar to that of imipramine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Abstract: The nature of [3H]imipramine binding to human platelets was investigated. Desipramine and 5-hydroxytryptamine (5-HT) displaced the same amount of binding and the binding was sensitive to protease treatment. The nature of pharmacological inhibition of [3H]imipramine binding was investigated in saturation experiments. Increases in K d without changes in B max were noted with the addition of 5-HT, desipramine, norzimeldine, or 5-methoxytryptoline. Reductions in B max without alterations in K D were obtained when citalopram or clomipramine was added. It is concluded that the [3H]imipramine binding site in human platelets is of protein nature and that this binding site contains the substrate recognition site for 5-HT uptake. In addition, [3H]imipramine and other 5-HT uptake inhibitors have bonds to other parts of the 5-HT uptake carrier or to the surrounding lipid membrane. This additional binding outside the substrate recognition site is not one single site but most likely represents sites that are specific for the chemical structure of each uptake inhibitor, respectively.  相似文献   

3.
Plasma membrane vesicles isolated from porcine blood platelets take up approximately 8 to 15 pmol of [3H]imipramine per mg of membrane protein. This apparent binding requires Na+ in the external medium and is reversed by 5-hydroxytryptamine and fluoxetine. The apparent KD for imipramine uptake is 23 nM, which agrees well with the KI for competitive inhibition of 5-hydroxytryptamine transport by imipramine. In contrast to 5-hydroxytryptamine transport, imipramine uptake is not dependent on transmembrane Na+ and K+ gradients and is insensitive to ionophores such as nigericin and gramicidin which dissipate these gradients. Although 5-hydroxytryptamine rapidly and competitively displaces imipramine from membrane vesicles, imipramine does not cause 5-hydroxytryptamine efflux and inhibits 5-hydroxytryptamine exchange. These results are consistent with the proposal that imipramine binds to the substrate site of the 5-hydroxytryptamine transporter but cannot be transported.  相似文献   

4.
Tricyclic antidepressants and nontricyclic serotonin (5-hydroxytryptamine) uptake blockers monophasically inhibit [3H]imipramine binding in human platelets. Similarly, serotonin and tryptamine inhibit the binding of [3H]imipramine in the low micromolar range and with a pseudo-Hill coefficient near unity. Dissociation of the [3H]imipramine receptor complex in the presence of uptake inhibitors follows first-order kinetics with a half-life of approximately 60 min. Although serotonin and tryptamine do not decrease [3H]imipramine binding when added under equilibrium conditions, simultaneous addition of serotonin or tryptamine with serotonin uptake inhibitors decreases the rate of ligand-receptor dissociation in a concentration-dependent manner. These data suggest a common site of action for serotonin, which is the substrate of the transporter system, and of tryptamine, its nonhydroxylated analog. This hypothesis is supported by the identification of a high-affinity (Km = 0.55 microM), saturable, and temperature-dependent uptake of [3H]tryptamine in human platelets. Uptake of [3H]tryptamine was inhibited potently by imipramine and nontricyclic serotonin uptake inhibitors with a potency similar to that observed for [3H]serotonin uptake. These data support the hypothesis that in platelets, [3H]imipramine, tricyclic, and nontricyclic serotonin uptake inhibitors bind to a common recognition site that is associated with the serotonin transporter but that differs from the substrate recognition site of the carrier through which serotonin and tryptamine exert a heterotropic allosteric modulation on [3H]imipramine binding.  相似文献   

5.
5-Methoxytryptoline potently inhibits [3H]imipramine binding to membranes from the cerebral cortex and platelets. Since 5-methoxytryptoline, which appears to occur endogenously with particularly high levels in the human pineal gland, also inhibits 5-hydroxytryptamine (5-HT, serotonin) uptake, it should be considered as a putative endogenous ligand modulating 5-HT transport. As the 5-HT transporter complex comprises the imipramine and the substrate recognition sites, which interact allosterically, it was essential to define the mechanism of inhibition of [3H]imipramine binding by 5-methoxytryptoline. Human platelets show an active and saturable uptake of 5-HT and tryptamine. The uptake of both substrates appears to be mediated by the same carrier and it is inhibited by 5-methoxytryptoline at submicromolar concentrations. 5-HT and tryptamine inhibit [3H]imipramine binding in human platelets with a Hill slope for inhibition close to unity and IC50 values of 3,265 and 3,475 nM, respectively. This inhibition is, however, not competitive because both 5-HT and tryptamine significantly decrease the rate of [3H]imipramine-receptor dissociation. Although 5-methoxytryptoline potently inhibits [3H]imipramine binding (IC50 = 44 nM) in human platelets with a Hill slope of unity, it does not affect the receptor-ligand dissociation rate of [3H]imipramine even at concentrations up to 100 microM. The present experiments show that 5-methoxytryptoline, in spite of its chemical similarity to the indoleamine transporter substrates, interacts with the imipramine receptor through a mechanism of competitive inhibition. This conclusion is supported by a selective effect of 5-methoxytryptoline on the Kd of [3H]imipramine binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
B Dean  D L Copolov 《Life sciences》1992,50(5):341-347
To determine whether a specific dopamine uptake mechanism is present on the human platelet the simultaneous uptake of [3H]dopamine and [14C]serotonin by platelets was measured. Utilising a dual radiolabel uptake technique, platelets have been shown to take up serotonin more rapidly and to a greater extent than they take up dopamine. Furthermore, at high concentrations serotonin was able to reduce dopamine uptake by platelets by 60% whereas dopamine had no effect on serotonin uptake. Similarly, imipramine and reserpine reduced (97% and 74% respectively) serotonin uptake by platelets in a dose-dependent manner, but did not affect the uptake of dopamine. Our data show that platelets take up dopamine by a mechanism independent of the imipramine-sensitive serotonin uptake mechanism. Furthermore, the increased capacity of platelets to store serotonin is because serotonin, unlike dopamine, is transported into the dense granules of the platelet.  相似文献   

7.
A number of 5-hydroxytryptamine (5-HT) uptake inhibitors have been shown to displace the binding of [3H]imipramine to rat cortical membranes in a complex manner with Hill slopes less than unity. Norzimeldine displaced the binding of [3H]imipramine in a biphasic manner with IC50 values for the two components of about 30 nM and 30 microM. This latter site alone was found in tissues that had been treated with a protease. Binding to both of these sites was displaced by 10 microM desipramine. The protease-sensitive [3H]imipramine binding sites were found to be saturable, high-affinity binding sites with a KD of 8 nM. The number of these sites varied between brain regions and was positively correlated with the regional distribution of [14C]5-HT but not [3H]noradrenaline uptake. This was not the case however for the protease-resistant but desipramine-displaceable binding sites. Since most previous [3H]imipramine binding studies have been performed with high concentrations of desipramine (10 microM) to define "specific binding," these data would suggest that either protease-sensitivity or displacability by 1 microM norzimeldine would give more reliable estimates of the specific binding.  相似文献   

8.
The nature of interaction between the site labeled by [3H]imipramine (IMI) and the 5-hydroxytryptamine (5-HT, serotonin) transporter in human platelets was examined. The sulfhydryl characterizing agent N-ethylmaleimide (NEM) differentially affected [3H]5-HT uptake and [3H]IMI binding in human platelet preparations. Concentrations of NEM that completely abolished [3H]5-HT uptake only minimally reduced [3H]IMI binding. Examining the effect of IMI on the kinetics of human platelet [3H]5-HT uptake revealed significant reductions in maximal velocity (Vmax) without altering affinity (Km). IC50 values for selected uptake blockers on [3H]IMI binding and [3H]5-HT uptake were determined. IC50 values of these compounds for uptake and binding revealed that agents such as IMI, chlorpromazine, amitriptyline, and nisoxetine were preferential inhibitors of [3H]IMI binding whereas fluoxetine, CL 216, 303, pyrilamine, and bicifadine were preferential [3H]5-HT uptake blockers. 5-HT was a weak displacer of [3H]IMI binding (IC25 = 3.0 microM) and exhibited a rather low Hill coefficient (nH app = 0.46). Results reported herein support the notion of an allosteric interaction between the [3H]IMI binding site and the 5-HT transporter complex in human platelets.  相似文献   

9.
The ability of neurotoxic substances to induce selective lesions of the descending monoaminergic pathways in rats was investigated. Saline, 6-hydroxydopamine, 5,6-dihydroxytryptamine, or 5,7-dihydroxytryptamine were administered into the lumbar subarachnoid space through a chronically indwelling catheter. The lesions were evaluated 2-3 weeks later by in vitro uptake of [3H]noradrenaline and [14C]5-hydroxytryptamine into synaptosomal preparations from the frontal cortex, brainstem, cervical spinal cord, and lumbar spinal cord of each animal. There was no difference in uptake between saline-injected and noncatheterized controls and no significant changes in cortical uptake after any of the treatments (dose range of neurotoxins: 0.6-80 micrograms). In the lumbar spinal cord, 6-hydroxydopamine (5-80 micrograms) reduced the [3H]noradrenaline uptake by approximately 90% with no effects on [14C]5-hydroxytryptamine uptake, whereas 5,6-dihydroxytryptamine reduced the uptake of [14C]5-hydroxytryptamine by 90% (20-80 micrograms). [3H]Noradrenaline uptake was unaffected by lower doses of 5,6-dihydroxytryptamine but fell by 45-55% after 40-80 micrograms. 5,7-Dihydroxytryptamine (10-80 micrograms) reduced [3H]noradrenaline uptake by 90-95% and [14C]5-hydroxytryptamine uptake by approximately 80% (5-80 micrograms) in the lumbar cord. It is concluded that intrathecal administration of suitable doses of neurotoxins may produce extensive selective lesions of descending noradrenergic and serotonergic pathways.  相似文献   

10.
The neurotoxic compound 1-[methyl-3H]-4-phenylpyridinium ([3H]MPP+) was actively taken up by human, rabbit, and guinea pig platelets incubated in plasma. In human platelets, the apparent Km of this uptake (22.6 microM) was 50 times higher than that for serotonin [5-hydroxytryptamine (5-HT]). The uptake of [3H]MPP+ by human platelets was inhibited by selective 5-HT uptake blockers [cianopramine, (-)-paroxetine, and clomipramine], by metabolic inhibitors (KCN and ouabain), and by drugs that interfere with amine storage in the 5-HT organelles (reserpine, mepacrine, and Ro 4-1284). Impairment of the transmembrane proton gradient by ionophores (monensin and nigericin) induced a marked release of radioactivity from platelets preincubated with [3H]MPP+. Fractionation of homogenates of rabbit platelets preincubated with [3H]MPP+ showed that the drug was concentrated to a great extent in the 5-HT organelle fraction. MPP+ competitively inhibited [14C]5-HT uptake by human platelets and reduced the endogenous 5-HT content of human, rabbit, and guinea pig platelets. These investigations show that MPP+ is transported into the platelets via the 5-HT carrier and is accumulated predominantly in the subcellular organelles that store 5-HT and other monoamines. It is suggested that an accumulation of MPP+ in amine storage vesicles of neurons may be involved in the effects of the drug in the CNS, e.g., by protecting other subcellular compartments from exposure to high concentrations of MPP+, by sustaining a gradual release of the toxin, or both.  相似文献   

11.
Antisera against 2-aminoimipramine covalently coupled to albumin have been raised in two rabbits. Both antisera bind imipramine and related tricyclic compounds as if to a single class of sites with high affinity and high titres. Displacement/inhibition assays showed that the affinities of various tricyclic compounds for the antisera showed a good correlation with the affinities of these drugs for the tricyclic antidepressant inhibitory sites on plasma-membrane 5-hydroxytryptamine carriers of human platelets and rat brain cortex. 5-Hydroxytryptamine and 5-hydroxytryptamine-uptake-selective drugs did not inhibit [3H]imipramine binding to antisera. The anti-imipramine antibodies were purified using imipramine-Sepharose affinity chromatography and were shown to be IgG class by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein A-Sepharose precipitation.  相似文献   

12.
Intralipid was administered intravenously to mice at a level of 2 g kg-1 day-1 for 23 days. No alterations in phagocytic index, liver or spleen size were observed in the chronically injected mice as compared with control mice that received saline injections. Tissue distribution of 0.45 micron multilamellar liposomes of egg phosphatidylcholine:cholesterol (2:1) was similar in mice that had been chronically injected with Intralipid to that in control mice. Mice chronically given the same total amount of phospholipid in the form of 0.2 micron liposomes of phosphatidylcholine:cholesterol (2:1) rather than as a lipid-triglyceride emulsion showed altered tissue distribution of entrapped label with decreased liver uptake and increased splenic uptake, which is indicative of reticuloendothelial blockade. Tissue distribution of [14C]dipalmitoylphosphatidylcholine Intralipid was compared with that of [14C]dipalmitoylphosphatidylcholine 0.2 micron MLV of phosphatidylcholine:cholesterol (2:1). Intralipid was taken up 2- to 3-fold less by liver and 5- to 10-fold less by spleen than liposomes. Blood levels of Intralipid were higher than those of liposomes. [14C]dipalmitoylphosphatidylcholine Intralipid was eliminated from the body at a faster rate than [14C]dipalmitoylphosphatidylcholine liposomes. The lack of reticuloendothelial blockade caused by Intralipid as compared with liposomes appears to be related to its diminished uptake into reticuloendothelial tissues. This diminished uptake may be related to differences in apolipoprotein uptake of Intralipid, which is primarily in the form of a phospholipid monolayer, and liposomes, which have their phospholipid organized into a bilayer.  相似文献   

13.
NCB-20 cells (neuroblastoma X fetal Chinese hamster brain hybrids) are equipped with a [3H]5-hydroxytryptamine [( 3H]5-HT) uptake system and [3H]imipramine recognition sites. Approximately 80% of the radioactivity taken up by cells incubated with [3H]5-HT was identified with 5-HT. [3H]5-HT uptake was temperature-dependent, partially sodium-dependent, saturable (Km = 7.3 +/- 0.6 microM; Vmax = 2.0 +/- 0.6 pmol/min/mg), and inhibited by clomipramine, imipramine, fluoxetine, and desipramine, but not by iprindole, mianserin, or opipramol. Lineweaver-Burk plots showed a competitive type of inhibition by imipramine and fluoxetine. [3H]5-HT uptake was not inhibited by nisoxetine or benztropine. [3H]Imipramine binding sites had a KD of 12 +/- 2 nM and a Bmax of 22 +/- 7 pmol/mg protein. The binding was sodium-sensitive although to a lesser extent than that found with brain membranes. Imipramine binding was displaced by tricyclic antidepressants with the following order of potency: clomipramine greater than imipramine greater than fluoxetine greater than desipramine much greater than iprindole = mianserin greater than opipramol. These results suggest that imipramine binding sites are present together with the 5-HT uptake sites in NCB-20 cells and that these sites interact functionally but are different biochemically.  相似文献   

14.
5-Hydroxytryptamine changes the shape of rat blood platelets by combination with a cinanserin-sensitive receptor which is not associated with the active uptake of 5-hydroxytryptamine. Binding of 5-hydroxy[3H]tryptamine to platelets at 4 degrees C demonstrates the presence of three saturable sites, and the highest-affinity site is apparently this 5-hydroxytryptamine receptor.  相似文献   

15.
Intramuscular administration to female rabbits of 2 mg/kg ethinylestradiol every other day for 10 days increased the uptake and incorporation of [14C]arachidonic acid into platelet lipids, and increased the proportion of [14C]arachidonic acid released from platelets after stimulation by thrombin. The conversion of [14C]arachidonic acid to thromboxane B2 did not differ between the control and ethinylestradiol-treated groups. Thus, the results of this study indicate that the major site in the prostaglandin metabolic pathway influenced by estrogen is the incorporation and release of arachidonic acid in platelet phospholipids.  相似文献   

16.
We have previously demonstrated synergistic potentiation of secretion by phorbol 12-myristate 13-acetate (PMA) and platelet agonists such as thrombin and the thromboxane mimetic, U46619, with short (less than 2 min) pre-incubations of PMA, despite inhibition of agonist-induced [Ca2+]i mobilization and arachidonate/thromboxane release. In this study, the effect of PMA on 5-hydroxytryptamine secretion in relation to arachidonate/thromboxane B2 release induced by collagen as well as the 'weak agonists', ADP, adrenaline and platelet-activating factor (PAF), was investigated using human platelet-rich plasma. Short incubations (10-30 s) with PMA (400 nM) before agonist addition caused an inhibition (60-100%) of 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation in response to maximally effective doses of ADP (10 microM), adrenaline (10 microM) and PAF (0.5 microM) but potentiated collagen-induced 5-hydroxy[14C]tryptamine secretion and [3H]arachidonate/thromboxane release. However, a longer pre-incubation with PMA (5 min) caused a significant reduction (20-50%) in the extent of collagen-induced 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation as seen earlier with thrombin, although collagen-induced [3]arachidonate release was still unaffected. Pretreatment of platelets with the cyclo-oxygenase inhibitor, indomethacin (10 microM), abolished 5-hydroxy[14C]tryptamine secretion in response to the weak agonists and reduced collagen (2.5-10 micrograms/ml) -induced secretion by 50-90%, depending on the collagen concentration. Addition of PMA (400 nM) 10 s before these agonists in indomethacin-treated platelets resulted in synergistic interactions between agonist and PMA leading to enhanced 5-hydroxy[14C]tryptamine secretion, although this was notably less than the synergism observed previously between thrombin and PMA or U46619 and PMA. The results suggest that the effect of short incubations with PMA on 5-hydroxytryptamine secretion induced by 'thromboxane-dependent' agonists, such as those examined in this study, is determined by the effect on agonist-induced thromboxane synthesis. However, when endogenous thromboxane synthesis is blocked, weak agonists as well as collagen can synergize with PMA at potentiating 5-hydroxytryptamine secretion, albeit to a weaker extent than thrombin or U46619. The results also suggest that PMA has differential effects on arachidonate release induced by collagen and thrombin.  相似文献   

17.
The effects of 5-hydroxytryptamine (5-HT) and 5-HT uptake inhibitors on the dissociation of [3H]paroxetine from rat brain membrane binding sites have been investigated. The dissociation induced by 5-HT (100 microM), paroxetine (0.15 microM), clomipramine (1 microM), citalopram (1 microM), imipramine (1 microM), or norzimeldine (1 microM) was consistent with first-order dissociation kinetics with half-life values of dissociation (t1/2) between 130 and 140 min. The dissociation induced by the combination of 5-HT (100 microM) with either citalopram (1 microM) or imipramine (1 microM) was not different from that initiated by either agent alone. These dissociation data, which are at variance with previous data on the 5-HT transporter labeled with [3H]imipramine, support a single-site model of the antidepressant binding/5-HT uptake site.  相似文献   

18.
This study investigated for the first time the potential effects of cis- and trans-resveratrol (c-RESV and t-RESV) on noradrenaline (NA) and 5-hydroxytryptamine (5-HT) uptake by synaptosomes from rat brain, on 5-HT uptake by human platelets, and on monoamine oxidase (MAO) isoform activity. Both c-RESV and t-RESV (5-200 microM) concentration-dependently inhibited the uptake of [3H]NA and [3H]5-HT by synaptosomes from rat brain and the uptake of [3H]5-HT by human platelets. In both experimental models, t-RESV was slightly more efficient than c-RESV. Furthermore, in synaptosomes from rat brain, the RESV isomers were less selective against [3H]5-HT uptake than the reference drug fluoxetine (0.1-30 microM). On the other hand, both c-RESV and t-RESV (5-200 microM) concentration-dependently inhibited the enzymatic activity of commercial (human recombinant) MAO isoform (MAO-A and MAO-B) activity, c-RESV being slightly less effective than t-RESV. In addition, both RESV isomers were slight but significantly more selective against MAO-A than against MAO-B. Since the principal groups of drugs used in the treatment of depressive disorders are NA/5-HT uptake or MAO inhibitors, under the assumption that the RESV isomers exhibit a similar behaviour in humans in vivo, our results suggest that these natural polyphenols may be of value as structural templates for the design and development of new antidepressant drugs with two important biochemical activities combined in the same chemical structure: NA/5-HT uptake and MAO inhibitory activity.  相似文献   

19.
The release of 43K+, lactate dehydrogenase (LDH) and [14C]-5-hydroxytryptamine ([14C]-5-HT) from platelets treated with sphingosine and four differently charged model amphiphiles was studied. Sphingosine was found to differ from the detergents because it induced a concentration-dependent release of both 43K+ and [14C]-5-HT without causing a release of LDH. The release of [14C]-5-HT preceded the release of 43K+ and it is concluded that these effects are associated with platelet activation. The detergents caused a release of 43K+ followed by a release of LDH without causing a release of [14C]-5-HT. These effects are attributed to a non-specific perturbation of the platelet plasma membrane.  相似文献   

20.
The effect(s) of a new imipramine analogue, 2-nitroimipramine, on high affinity [3H] imipramine binding and [3H] serotonin uptake in human platelets were studied. 2-Nitroimipramine was found not only to be a very potent inhibitor of [3H] imipramine binding and [3H] serotonin uptake but was found to irreversibly inhibit binding and uptake simultaneously. This finding supports previous observations from our laboratory and others that high affinity imipramine binding labels serotonin uptake or transport sites. 2-Nitroimipramine should prove an important tool for subsequent studies of the molecular mechanism(s) involved in the transport of serotonin and the binding of imipramine to platelet and brain membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号