首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron transfer to rat liver microsomal cytochrome P-450 of 14 alpha-methyl group demethylation of 24,25-dihydrolanosterol (C30-sterol) has been studied with a new radio-high-performance liquid chromatography assay. The monooxygenase is dependent upon NADPH plus oxygen, insensitive to CN-, and sensitive to CO. Microsomal oxidation is also sensitive to trypsin digestion, and reactivation is dependent upon the addition of purified, detergent-solubilized cytochrome P-450 reductase. Electron transport of C-32 sterol demethylation can be fully supported by very low concentrations of NADPH (approximately 10 microM) only in the presence of saturating concentrations of NADH (approximately 200 microM) suggesting involvement of cytochrome b5-dependent electron transfer in addition to the NADPH-supported pathway. The cytochrome P-450 of 14 alpha-demethylation has been solubilized with detergents, resolved chromatographically from cytochrome P-450 reductase and cytochrome b5, and fully active C-32 demethylase reconstituted. Incubation of intact microsomes with NADH and very low concentrations of NADPH described above leads to interruption of demethylation without 14 alpha-methyl group elimination. Under these conditions, C-32 oxidation products of the C30-sterol substrate accumulate at the expense of formation of demethylated, C29-sterol products. This enzymic interruption of C-32 demethylation, accumulation of oxygenated C30-sterols, along with subsequent demethylation of the isolated C30-oxysterols under similar oxidative conditions supports the suggestion that 14 alpha-hydroxymethyl and aldehydic sterols are metabolic intermediates of sterol 14 alpha-demethylation. Only very modest inductions of the constitutive cytochrome P-450 isozyme of 14 alpha-methyl sterol oxidase can be obtained with just 2 out of 12 known, potent inducers of mammalian hepatic cytochrome P-450s. Alternatively, administration of complete adjuvant in mineral oil drastically reduces amounts of total microsomal cytochrome P-450 while activity of 14 alpha-methyl sterol oxidase is not affected dramatically. Thus, as much as 2.5-fold enhancement of C-32 oxidase specific activity is obtained when expressed per unit of cytochrome P-450.  相似文献   

2.
Microsomes isolated from corn embryos (Zea mays) can demethylate the 14 alpha-methyl group of obtusifoliol 2. An enzymatic assay has been developed for obtusifoliol 14 alpha-methyl-demethylase in higher plants. The enzymatic reaction was shown to occur sequentially, converting obtusifoliol 2 to 4 alpha-methyl-5 alpha-ergosta-8,24(28)-dien-3 beta-ol 4 via the trienol 4 alpha-methyl-5 alpha-ergosta-8,14,24(28)-trien-3 beta-ol 3 which was thoroughly identified. This enzymatic reaction is dependent of NADPH and molecular oxygen. It is inhibited by CO, menadione and specific inhibitors of cytochrome P-450, the CO inhibition being partially reversed by light. It is concluded that in Zea mays microsomes, obtusifoliol is demethylated at C-14 by a cytochrome P-450 containing monooxygenase system.  相似文献   

3.
Lanosterol 14 alpha-methyl demethylation is a cytochrome P-450-dependent process that proceeds through the oxidative sequence of alcohol, aldehyde followed by decarbonylation with formic acid release. Microsomal metabolism studies shown here indicate that only lanostenols and 32-oxy-lanostenols with unsaturation at either the delta 7 or delta 8 position in the sterol can be demethylated. The 14 alpha-methyl group of either lanostan-3 beta-ol or delta 6 lanostenol is not oxidized to the anticipated C-32 alcohol or aldehyde by the enzyme, nor are the corresponding 32-oxy-lanostanols demethylated when incubated with microsomal preparations. Despite the lack of metabolism, the saturated and delta 6 sterol analogues are effective competitive inhibitors of demethylase activity. Utilizing preferred substrates, comparison of the component reactions of the demethylation sequence shows that both the oxidative function and lyase function are sensitive to common inhibitors and that both activities require NADPH. These findings strongly support the premise that a P-450 isozyme does catalyze each phase of the lanosterol 14 alpha-methyl demethylation sequence. Collectively these results demonstrate the double-bond requirement for both components of the demethylation sequence and suggest that the olefinic electrons at delta 7 or delta 8 but not delta 6 may participate directly during demethylation. This participation may involve stabilizing a transition state intermediate or directing activated oxygen insertion as part of the P-450 monoxygenase mechanism.  相似文献   

4.
Employing reconstitution assays and measurement of cytochrome P-450 content, lanosterol 14 alpha-demethylase and cholesterol 7 alpha-hydroxylase have been studied in solubilized preparations of rat hepatic microsomes. Both activities have been resolved from other cytochrome P-450 isozymes and each other by chromatography on DEAE-Sephacel and adsorption on hydroxylapatite. The demethylase has been further purified to homogeneity by cation exchange chromatography on Mono-S resin. The purified cytochrome displays a specific content of 15.8 nmol of heme/mg of protein and a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent Mr of 51,000. A Soret maximum for the reduced/CO binding complex at 448 nm is observed. Reconstitution of the purified cytochrome with NADPH-cytochrome-c reductase, dilaurylphosphatidylcholine, NADPH, and O2 supports the demethylation process which is inhibited by CO. Reconstitution also affords accumulation of oxygenated, metabolic intermediates with single catalytic turnover of the cytochrome, thus supporting the hypothesis that a single isozyme of cytochrome P-450 is responsible for all three oxidations and the lyase activity involved in the lanosterol C-32 demethylation sequence. Low oxidase activity toward several xenobiotic substrates and selectivity toward endogenous sterol substrates is observed for the purified cytochrome. These results indicate a high degree of substrate specificity for the cytochrome, which would be expected for a constitutive P-450 involved in anabolic biochemical processes.  相似文献   

5.
A reconstituted monooxygenase system containing a form of cytochrome P-450, termed P-450(14)DM, and NADPH-cytochrome P-450 reductase, both purified from yeast microsomes, catalyzed the conversion of lanosterol (4,4,14 alpha-trimethyl-5 alpha-cholesta-8,24-dien-3 beta-01) to a sterol metabolite in the presence of NADPH and molecular oxygen. This conversion did not occur anaerobically or when either P-450(14)DM, the reductase, or NADPH was omitted from the system. In both free and trimethylsilylated forms, this metabolite showed a relative retention time (relative to lanosterol) of 1.10 in gas chromatography on OV-17 columns. Comparison of its mass spectrum and retention time with those of lanosterol and 4,4-dimethylzymosterol (4,4-dimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol) indicated that the metabolite was 4,4-dimethyl-5 alpha-cholesta-8,14,24-trien-3 beta-ol. Upon aerobic incubation of microsomes from semianaerobically grown yeast cells in the presence of NADPH and cyanide, endogenous lanosterol was converted to 4,4-dimethylzymosterol. This metabolism was inhibited by CO, metyrapone, SKF-525A, and antibodies to P-450(14)DM. It is concluded that in yeast microsomes lanosterol is 14 alpha-demethylated by a P-450(14)DM-containing monooxygenase system to give rise to 4,4-dimethyl-5 alpha-cholesta-8,14,24-trien-3 beta-ol, which is then reduced to 4,4-dimethylzymosterol by an NADPH-linked reductase.  相似文献   

6.
Recent studies have shown that a cytochrome P-450 present in microsomes of semi-anaerobically grown cells of Saccharomyces cerevisiae is functional in the 14 alpha-demethylation of lanosterol (4,4,14 alpha-trimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol), but the occurrence of the same cytochrome P-450 in microsomes of aerobically grown yeast cells has not yet been reported. In this study, the microsomal fraction from aerobically grown cells was found to catalyze the lanosterol demethylation in the presence of NADPH and O2 and that this activity was sensitive to CO. In Ouchterlony double diffusion test, antibodies to the yeast cytochrome P-450 formed a single precipitin line with the microsomal fraction as well as with the purified yeast cytochrome P-450 and the two precipitin lines fused with each other. Furthermore, the antibodies inhibited the lanosterol demethylation activity of the microsomal fraction from aerobically grown cells. The quadratic-derivative absorption spectrum of the microsomal fraction measured in the presence of both Na2S2O4 and CO showed an absorption band at 450 nm which is attributable to the reduced CO compound of cytochrome P-450. These facts led to the conclusion that cytochrome P-450 actually exists in aerobically grown yeast and participates in the lanosterol 14 alpha-demethylation which is essential for the ergosterol (5 alpha-ergosta-5,7,22-trien-3 beta-ol) biogenesis by yeast.  相似文献   

7.
1. The C-20 hydroxylation of alpha-ecdysone to produce beta-ecdysone was investigated in the desert locust, Schistocerca gregaria. 2. alpha-Ecdysone C-20 hydroxylase activity was located primarily in the fat-body and Malpighian tubules. The properties of the hydroxylation system from Malpighian tubules investigated further. 3. The enzyme system was mitochondrial, had a pH optimum of 6.5, an apparent Km of 12.5 micron and required O2 and NADPH. 4. The activity of the hydroxylation system showed developmental variation within the fifth instar, the maximum activity corresponding to the maximum tire of endogenous moulting hormone. The significance of these results is assessed in relation to the control of the endogenous titre of beta-ecdysone. 5. The mechanism of the hydroxylation system was investigated by using known inhibitors of hydroxylation reactions such as CO, metyrapone and cyanide. 6. The CO difference spectrum of the reduced mitochondrial preparation indicated the presence of cytochrome P-450 in the preparation. 7. It concluded that the alpha-ecdysone C-20 hydroxylase system is a cytochrome P-450-deendent mono-oxygenase.  相似文献   

8.
The interaction of trans-cinnamic acid with the cytochrome P-450 of microsomes derived from washed potato slices has been studied. The washing process increased the specific content of microsomal electron transport components and hence provided a useful material in which to study the interaction. Evidence is presented that the trans-cinnamic acid interacts with the cytochrome P-450, and that this interaction is analogous to "type 1" interactions of other cytochrome P-450 systems. This evidence includes the formation of a "type 1" substrate binding spectrum, an increased rate of reduction of cytochrome P-450 by NADPH in the presence of trans-cinnamic acid, an increased oxygen uptake and NADPH oxidation when trans-cinnamic acid is added to the microsomes in the presence of NADPH, and a close correlation between biophysical parameters of electron transport in the cytochrome P-450 system and enzymological parameters of the trans-cinnamic acid 4-hydroxulation reaction. The investigation has been extended to cytochrome P-450 systems of other tissues and it has been found that the trans-cinnamic acid 4-hydroxylation reaction cannot account for the presence of most of th cytochrome P-450 in several tissues. This suggests that other functions of higher plant cytochrome P-450 chains exist, and that the substrate specificityof the hemoprotein may vary in different plant tissues.  相似文献   

9.
The hydroxylyzable steroid 17-hydroxyprogesterone as well as the nonhydroxylyzable steroid androst-4-ene-3,17-dione induce Type I spectral change in cytochrome P-450, the oxygen activating component of the C-21 hydroxylase system. The data presented show quantitative relationship between the Type I spectral change and (1) the steroid-dependent NADPH oxidation; (2) the steroid-dependent increase in the steady-state level of P-450·CO and (3) the rate of C-21 hydroxylation in the case of 17-hydroxyprogesterone. The results indicate that the Type I spectral change is a reflection of the amount of the cytochrome activated for redox reactions and is independent of steroid hydroxylation.  相似文献   

10.
Microsomal delta 7-sterol 5-desaturase of cholesterol biosynthesis is a multienzyme system which catalyzes the introduction of the delta 5-bond into delta 7-cholestenol to form 7-dehydrocholesterol. The detergent-solubilized 5-desaturase has been purified more than 70-fold and resolved from electron carriers and other rat liver microsomal enzymes of sterol biosynthesis by chromatography on DEAE-Sephacel, CM-Sepharose, and immobilized cytochrome b5; the 5-desaturase had not been fully resolved from cytochrom b5 reductase in earlier work. A functional electron transport system for the 5-desaturase has been reconstituted by combining the purified 5-desaturase and electron carriers with egg phosphatidylcholine liposomes. Optimizations of conditions for reconstitution have been obtained; both cytochrome b5 and NADH-cytochrome b5 reductase serve as electron carriers. A pyridine nucleotide-dependent flavoprotein is required and the requirement can be satisfied with either purified cytochrome b5 reductase or cytochrome P-450 reductase. Cyanide and iron-chelators strikingly inhibit the 5-desaturase activity, thus suggesting that 5-desaturase is a metalloenzyme as are other well-characterized cytochrome b5-dependent oxidases. 5-Desaturase is resolved from 4-methyl sterol oxidase activity of cholesterol biosynthesis by chromatography on the immobilized cytochrome b5. This resolution of the two oxidases not only indicates that introduction of the delta 5-bond and oxidation of 4 alpha-methyl groups are catalyzed by different terminal oxidases, but resolution affords enzymes of sufficient purity to carry out reconstitution experiments. A novel assay based on substrate-dependent increments of oxidation of alpha-NADH has been developed for measurement of 5-desaturase activity. Measurement of stoichiometry of 5-desaturase demonstrates that for each equivalent of cis-desaturation of delta 7-cholestenol, 1 eq of NADH is consumed. Along with strict dependence upon oxygen, this observation confirms, as suggested by previous workers, that the 5-desaturation is catalyzed by a mixed function oxidase rather than a dehydrogenase.  相似文献   

11.
Leukotriene B4 metabolism by hepatic cytochrome P-450   总被引:2,自引:0,他引:2  
Leukotriene B4 (LTB) was found to be metabolized by suspensions of rat liver microsomes in the presence of NADPH and oxygen. The rate of LTB metabolism was also measured in reconstituted systems of both micelles and phospholipid vesicles containing cytochrome P-450-LM2, NADPH cytochrome P-450 reductase, and cytochrome b5. A 1 microM concentration of LTB was metabolized by rat hepatic microsomes at a rate of 4 pmol LTB/min/nmole P-450, and by vesicle and micelle reconstituted systems at 3 pmole/min/nmole P-450-LM2. At this rate a 10 g rat liver exposed to 1 microM LTB can metabolize 30 micrograms per hour. In that the leukotrienes are pharmacologically active at nanomolar concentrations, hepatic metabolism may be an important pathway of leukotriene inactivation.  相似文献   

12.
A procedure was developed for the purification of an acetone-inducible form of cytochrome P-450 (P-450ac) to electrophoretical homogeneity from liver microsomes of acetone-treated rats. The P-450ac preparation containing 16.0 to 16.5 nmol P-450/mg protein moved as a single protein band with an estimated molecular weight of 52,000 upon gel electrophoresis in the presence of sodium dodecyl sulfate. The ferric P-450ac showed an absorption maximum at 394 nm at 25 degrees C, suggesting that it exists mainly in the high-spin form. It also existed in the low-spin form, especially at lower temperatures, as indicated by the absorption maximum in the 412-nm region. Upon reconstitution with NADPH: cytochrome P-450 reductase and phospholipid, P-450ac efficiently catalyzed both the demethylation and denitrosation of N-nitrosodimethylamine (NDMA) showing Vmax values of 23.8 and 2.3 nmol min-1 nmol P-450-1, respectively. The catalytic activity of P-450ac was greatly affected by cytochrome b5 which decreased the Km values of these reactions by a factor of 10 and increased the Vmax values. Cytochrome b5 appeared to interact with P-450 at a molar ratio of 1:1 and an intact cytochrome b5 structure was required for such interaction. Among the substrates studied, the demethylation of NDMA was affected the most by cytochrome b5 and showed the highest rate. P-450ac also catalyzed the oxygenation of N-nitrosomethylethylamine and aniline and the activity was enhanced slightly by cytochrome b5. Cytochrome b5 did not enhance the P-450ac-catalyzed metabolism of other drug substrates such as benzphetamine, aminopyrine, and ethylmorphine. P-450ac appeared to be similar in property to the previously studied rat P-450et (ethanol-inducible), rat P-450j (isoniazid-inducible), and rabbit P-450LM3a (ethanol-inducible). These P-450 species represent a new class of P-450 isozymes that are important in the metabolism of many endobiotics and xenobiotics.  相似文献   

13.
The effect of administration of carbon tetrachloride and dimethylnitrosamine in vivo on hepatic microsomal function related to drug metabolism was measured. It was found that the capacity of isolated microsomes to demethylate dimethylaniline was diminished during the first hour after carbon tetrachloride poisoning and during the second hour after dimethylnitrosamine poisoning. Thereafter the microsomes from carbon tetrachloride-poisoned livers showed a continuous decline in activity so that at 24hr. there was little residual capacity to undertake demethylation. Microsomes from dimethylnitrosamine-poisoned animals were not different from controls at 24hr. During the first 3hr. there was a transient rise in the accumulation of the N-oxide intermediate in carbon tetrachloride-poisoned livers, with a subsequent fall to below control values. In dimethylnitrosamine poisoning there was a parallel decrease in N-oxide accumulation with decreased demethylation. In the latter part of the first 24hr. the ratio of N-oxide accumulation to demethylation was increased in both instances. At 2hr. after poisoning with either compound there was no evidence of altered NADPH(2)-dependent neotetrazolium reduction or lipid peroxidation. NADPH(2)-dependent azo-dye cleavage was decreased. There was no difference in microsomal cytochrome b(5) content, but there was a decrease in the amount of cytochrome P-450. This latter change was correlated with the decreased capacity for NADPH(2)-dependent oxidative demethylation. It is suggested that dimethylnitrosamine is associated with a defect in microsomal NADPH(2)-dependent electron transport at the level of cytochrome P-450. In addition to affecting cytochrome P-450, carbon tetrachloride is associated with a second severe block involving the release of formaldehyde from the N-oxide intermediate.  相似文献   

14.
Interaction between lanosterol and cytochrome P-450 purified from microsomes of anaerobically-grown Saccharomyces cerevisiae was studied. Lanosterol (4,4,14α-trimethyl-5α-cholesta-8,24-dien-3β-ol) stimulated the oxidation of NADPH by molecular oxygen in the presence of cytochrome P-450 and NADPH-cytochrome P-450 reductase both purified from S. cerevisiae microsomes. Lanosterol stimulated the reduction of cytochrome P-450 by NADPH with the cytochrome P-450 reductase, and induced Type I spectral change of cytochrome P-450. These observations suggest that lanosterol interacts to the substrate region of cytochrome P-450 of S. cerevisiae. Based on these facts, possible role of cytochrome P-450 in lanosterol metabolism in yeast cell is discussed.  相似文献   

15.
Androst-4-ene-3,17-dione, although not hydroxylated by the C-21 hydroxylase, induces Type I spectral change in cytochrome P-450 and stimulates NADPH oxidation and oxygen consumption. The androstenedione-dependent oxygen activation results in reduction of oxygen to water without producing a free peroxide intermediate as evidenced by the ratio of NADPH oxidized to O2 consumed being equal to 2 in the presence of this steroid.  相似文献   

16.
The application of cytochrome P-450 in substrate conversion is complicated both due to the limited stability and the cofactor regeneration problems. To overcome the disadvantages of NADPH consumption the transfer of the reduction equivalents from an electrode into the cytochrome P-450-system was studied: 1. NADPH was cathodically reduced at a mercury pool electrode. By immobilization of NADP on dialdehyde Sephadex the reductive recycling was possible. 2. Different forms of reduced oxygen were produced by the cathode: a) The reaction of O2- with deoxycorticosterone yields a carboxylic acid derivative. In contrast the cytochrome P-450 catalyzed NADPH-dependent reaction with the same substrate gives corticosterone, O2- represents only an intermediate in the activation of oxygen and is not the "activated oxygen" species. b) Molecular oxygen was reduced to HO2- and H2O2, respectively. The interaction of adsorbed cytochrome P-450 on the electrode surface with the reduced oxygen species in the absence of NADPH was studied. The electrochemically generated peroxide seems to be more active than added H2O2. 3. In a model of electro-enzyme-reactor several substrates were hydroxylated by microsomal cytochrome P-450 with cathodically reduced oxygen which substitutes NADPH.  相似文献   

17.
The mechanism by which 2-bromo-4'-nitroacetophenone (BrNAP) inactivates cytochrome P-450c, which involves alkylation primarily at Cys-292, is shown in the present study to involve an uncoupling of NADPH utilization and oxygen consumption from product formation. Alkylation of cytochrome P-450c with BrNAP markedly stimulated (approximately 30-fold) its rate of anaerobic reduction by NADPH-cytochrome P-450 reductase, as determined by stopped flow spectroscopy. This marked stimulation in reduction rate is highly unusual in that Cys-292 is apparently not part of the heme- or substrate-binding site, and its alkylation by BrNAP does not cause a low spin to high spin state transition in cytochrome P-450c. Under aerobic conditions the rapid oxidation of NADPH catalyzed by alkylated cytochrome P-450c was associated with rapid reduction of molecular oxygen to hydrogen peroxide via superoxide anion. The intermediacy of superoxide anion, formed by the one-electron reduction of molecular oxygen, established that alkylation of cytochrome P-450c with BrNAP uncouples the catalytic cycle prior to introduction of the second electron. The generation of superoxide anion by decomposition of the Fe2+ X O2 complex was consistent with the observations that, in contrast to native cytochrome P-450c, alkylated cytochrome P-450c failed to form a 430 nm absorbing chromophore during the metabolism of 7-ethoxycoumarin. Alkylation of cytochrome P-450c with BrNAP did not completely uncouple the catalytic cycle such that 5-20% of the catalytic activity remained for the alkylated cytochrome compared to the native protein depending on the substrate assayed. The uncoupling effect was, however, highly specific for cytochrome P-450c. Alkylation of nine other rat liver microsomal cytochrome P-450 isozymes with BrNAP caused little or no increase in hydrogen peroxide formation in the presence of NADPH-cytochrome P-450 reductase and NADPH.  相似文献   

18.
Cytochrome P-450-dependent digitoxin 12 beta-hydroxylase from cell cultures of foxglove (Digitalis lanata) was solubilized from microsomal membranes with CHAPS (3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulphonic acid). Cytochrome P-450 was separated from NADPH: cytochrome c (P-450) reductase by ion-exchange chromatography on DEAE-Sephacel. NADPH:cytochrome c (P-450) reductase was further purified by affinity chromatography on 2',5'-ADP-Sepharose 4B. This procedure resulted in a 248-fold purification of the enzyme; on SDS/polyacrylamide-gel electrophoresis after silver staining, only one band, corresponding to a molecular mass of 80 kDa, was present. The digitoxin 12 beta-hydroxylase activity could be reconstituted by incubating partially purified cytochrome P-450 and NADPH:cytochrome c (P-450) reductase together with naturally occurring microsomal lipids and flavin nucleotides. This procedure yielded about 10% of the original amount of digitoxin 12 beta-hydroxylase.  相似文献   

19.
A. Shafiee  T. Chen    P. Cameron 《Applied microbiology》1995,61(10):3544-3548
As a result of an extensive screening program for the microbial modification of the immunosuppressant FK-506, one culture, Streptomyces rimosus MA187, which specifically catalyzed the C-31 demethylation of FK-506 was identified. Treatment of the biotransforming culture with FK-506 increased demethylase activity 2.4-fold and stabilized the cytochrome P-450 protein. The enzyme responsible for this demethylation (31-O-FK-506 demethylase) was isolated and shown to be a soluble cytoplasmic protein which is constitutively expressed in the cells, which requires NADPH, ferredoxin-NADP(sup+)-reductase, and ferredoxin for activity, and which shows a cytochrome P-450 light absorption characteristic. Carbon monoxide saturation of the enzyme preparation and known mammalian cytochrome P-450 inhibitors such as quinidine HCl, ketoconazole, troleandomycin, and sulfaphenazole abolish the demethylating activity extensively. The purified enzyme is a monomeric protein with a molecular mass of 42 kDa and shows its maximal activity at a pH of 7.4 and an incubation temperature of 34(deg)C. The first 19 N-terminal amino acids in the sequence of the purified protein have been determined, with no cytochrome P-450 match found in the OWL and Swiss-Prot 23 databases. The isolated demethylase is therefore a cytochrome P-450 protein that can be used as a catalyst for the synthesis of 31-O-desmethylFK-506, an important immunosuppressant and a known metabolite of FK-506 metabolism by human liver microsomes.  相似文献   

20.
Metabolism of the potent hepatocarcinogen N-nitrosodimethylamine (NDMA) was evaluated in reconstituted monooxygenase systems containing each of 11 purified rat hepatic cytochrome P-450 isozymes. The reaction has an absolute requirement for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH, as well as a partial dependence on dilauroylphosphatidylcholine. Of the cytochrome P-450 isozymes evaluated, only cytochrome P-450j, purified from livers of ethanol- or isoniazid-treated rats, had high catalytic activity for the N-demethylation of NDMA. At substrate concentrations of 0.5 and 5 mM, rates of NDMA metabolism to formaldehyde catalyzed by cytochrome P-450j were at least 15-fold greater than the rates obtained with any of the other purified isozymes. At the pH optimum (approximately 6.7) for the reaction, the Km,app and Vmax were 3.5 mM and 23.9 nmol/min/nmol cytochrome P-450j, respectively. With hepatic microsomes from ethanol-treated rats, which contain induced levels of cytochrome P-450j, the Km,app and Vmax were 0.35 mM and 3.9 nmol/min/nmol cytochrome P-450, respectively. Inclusion of purified cytochrome b5 in the reconstituted system containing cytochrome P-450j caused a six-fold decrease in Km,app (0.56 mM) of NDMA demethylation with little or no change in Vmax (29.9 nmol/min/nmol cytochrome P-450j). Trypsin-solubilized cytochrome b5, bovine serum albumin, or hemoglobin had no effect on the kinetic parameters of the reconstituted system, indicating a specific effect of intact cytochrome b5 on the Km,app of the reaction. These results demonstrate high isozyme specificity in the metabolism of NDMA to an ultimate carcinogen and further suggest an important role for cytochrome b5 in this biotransformation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号