首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CD11c(int)B220(+)NK1.1(+)CD49(+) subset of cells has recently been described as IFN-producing killer dendritic cells (IKDC), which share phenotypic and functional properties of dendritic cells and NK cells. Herein we show that bone marrow-derived murine dendritic cell preparations contain abundant CD11c(int)B220(+)NK1.1(+)CD49(+) cells, the removal of which results in loss of tumoricidal activity of unpulsed dendritic cells in vivo. Moreover, following s.c. injection, as few as 5 x 10(3) highly pure bone marrow-derived IKDC cells are capable of shrinking small contralateral syngeneic tumors in C57BL/6 mice, but not in immunodeficient mice, implying the obligate involvement of host effector cells in tumor rejection. Our data suggest that bone marrow-derived IKDC represent a population that has powerful tumoricidal activity in vivo.  相似文献   

2.
IFN-producing killer dendritic cells (IKDC) were initially described as B220(+)CD11c(+)CD3(-)NK1.1(+) tumor-infiltrating cells that mediated part of the antitumor effects of the combination therapy with imatinib mesylate and IL-2. In this study, we show their functional dependency on IL-15 during homeostasis and inflammatory processes. Trans-presentation of IL-15 by IL-15Ralpha allows dramatic expansion of IKDC in vitro and in vivo, licenses IKDC for TRAIL-dependent killing and endows IKDC with immunizing potential, all three biological attributes not shared by B220(-)NK cells. However, IL-15 down-regulates the capacity of IKDC to induce MHC class I- or II-restricted T cell activation in vitro. Trans-presentation of IL-15 by IL-15Ralpha allows IKDC to respond to TLR3 and TLR4 ligands for the production of CCL2, a chemokine that is critical for IKDC trafficking into tumor beds (as described recently). We conclude that IKDC represent a unique subset of innate effectors functionally distinguishable from conventional NK cells in their ability to promptly respond to IL-15-driven inflammatory processes.  相似文献   

3.
Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells.  相似文献   

4.
Estrogen has diverse effects on inflammation and immune responses. That pregnancy is associated with remission of some autoimmune diseases and exacerbation of others suggests that physiological fluctuation in estrogen levels could affect the immune responses in humans. However, the molecular basis for these phenomena is poorly understood. We hypothesized that fluctuations of estrogen levels modulate intracellular signaling for immune responses via estrogen receptors (ERs). In reporter assays, 17beta-estradiol (E2) at a physiologically high concentration increased the activity of NF-kappaB in Jurkat cells stimulated by PMA/ionomycin or TNF-alpha. Overexpression and RNA interference experiments suggested that the effects were mediated through ERbeta. Immunoprecipitation assay showed that both ERalpha and ERbeta are directly associated with NF-kappaB in the cell nucleus. Using chromatin immunoprecipitation assay, we confirmed that ERalpha and ERbeta associated with NF-kappaB and steroid hormone coactivators at the promoter region of NF-kappaB regulated gene. Considering that NF-kappaB regulates the expression of various genes essential for cell growth and death, estrogen could regulate the fate of T cells by affecting the activity of NF-kappaB. To determine whether E2 alters the fate of T cells, we investigated E2 actions on T cell apoptosis, a well-known NF-kappaB-mediated phenomenon. E2 increased apoptosis of Jurkat cells and decreased that of human peripheral blood T cells. Our results indicate that E2 at a physiologically high concentration modulates NF-kappaB signaling in human T cells via ERbeta and affects T cell survival, suggesting that these actions may underlie the gender differences in autoimmune diseases.  相似文献   

5.
Infection with schistosome helminths is associated with granulomatous inflammation that forms around parasite eggs trapped in host tissues. In severe cases, the resulting fibrosis can lead to organ failure, portal hypertension, and fatal bleeding. Murine studies identified IL-17 as a critical mediator of this immunopathology, and mouse strains that produce high levels of IL-17 in response to schistosome infection show increased mortality. In this article, we demonstrate that schistosome-specific IL-17 induction by dendritic cells from low-pathology C57BL/6 mice is normally regulated by their concomitant induction of IL-10. Simultaneous stimulation of schistosome-exposed C57BL/6 dendritic cells with a heat-killed bacterium enabled these cells to overcome IL-10 regulation and induce IL-17, even in wild-type C57BL/6 recipients. This schistosome-specific IL-17 was dependent on IL-6 production by the copulsed dendritic cells. Coimmunization of C57BL/6 animals with bacterial and schistosome Ags also resulted in schistosome-specific IL-17, and this response was enhanced in the absence of IL-10-mediated immune regulation. Together, our data suggest that the balance of pro- and anti-inflammatory cytokines that determines the severity of pathology during schistosome infection can be influenced not only by host and parasite, but also by concurrent bacterial stimulation.  相似文献   

6.
7.
8.
Natural killer (NK) cells and dendritic cells (DCs) are recruited to inflammatory tissues in response to infection. Following priming by pathogen-derived products, their reciprocal interactions result in a potent activating crosstalk that regulates both the quality and the intensity of innate immune responses. Thus, pathogen-primed NK cells, in the presence of cytokines released by DCs, become activated. At this stage they favor DC maturation and also select the most suitable DCs for subsequent migration to lymph nodes and priming of T cells. In addition, a specialized subset of NK cells might directly participate in the process of T-cell priming via the release of interferon (IFN)gamma. Thus, the reciprocal crosstalk between NK cells and DCs that is induced by microbial products not only promotes rapid innate responses against pathogens but also favor the generation of appropriate downstream adaptive responses.  相似文献   

9.
Natural killer (NK) cells and dendritic cells (DCs) are two types of specialized cell of the innate immune system, the reciprocal interaction of which results in a potent, activating cross-talk. For example, DCs can prime resting NK cells, which, in turn, after activation, might induce DC maturation. However, NK cells negatively regulate the function of DCs also by killing immature DCs in peripheral tissues. Moreover, a subset of NK cells, after migration to secondary lymphoid tissues, might have a role in the editing of mature DCs based on the selective killing of mature DCs that do not express optimal surface densities of MHC class I molecules. So, cognate interactions between NK cells and DCs provide a coordinated mechanism that is involved not only in the regulation of innate immunity, but also in the promotion of appropriate downstream adaptive responses for defence against pathogens.  相似文献   

10.
Wang H  Wang ZA  He RR 《生理学报》2000,52(6):515-518
用细胞外记录技术 ,在大鼠脑片穹隆下器 (subfornicalorgan ,SFO)上观察了 17β 雌二醇 (17β estradiol,E2 )对SFO神经元放电的影响 ,并进而分析其作用机制。实验结果如下 :(1) 15个SFO神经元在给予小剂量E2(0 1nmol/L)时 ,放电频率由 3 2 1± 0 37增至 6 79± 0 71Hz(P <0 0 0 1) ;而在给予大剂量E2 (10 0nmol/L)时 ,则放电频率由 3 44± 0 40Hz降至 1 44± 0 36Hz (P <0 0 1) ;(2 )在 7个SFO神经元应用谷氨酸NMDA受体阻断剂MK 80 1(5 0pmol/L) ,可阻断小剂量E2 (0 1nmol/L)对SFO神经元的兴奋效应 ;(3)在 7个SFO神经元应用NO生理性前体L 精氨酸 (L arginine ,1mmol/L)时 ,SFO神经元放电减少 ,且可阻断小剂量E2 (0 1nmol/L)对神经元的兴奋效应 ;(4 )在 6个SFO神经元应用NOS抑制剂L NG 硝基精氨酸甲酯 (L NAME ,10mmol)引起SFO神经元放电增加 ,并阻断大剂量E2 (10 0nmol/L)对SFO神经元的抑制效应。结果提示 :E2 对SFO神经元有双重作用。小剂量E2 使SFO神经元放电增加 ,这一效应可能与谷氨酸受体激活有关 ;而大剂量E2 则导致神经元放电减少 ,此效应可归因于NOS激活而引发NO生成。  相似文献   

11.
We have previously described a technique to obtain short-term cultures of epithelial cells from Wistar rat vaginae. In order to improve the efficiency and life span of these cultures, in the present study we have cultured the vaginal cells with lethally irradiated 3T3 cell feeder layers. Under this condition, cells can grow for several weeks while retaining epithelial characteristics and can eventually be subcultured. The proliferative effect of the ovarian hormones in these cultures was studied using two different approaches, [Methyl-3H]Thymidine (3HTdr) incorporation and increase in cell number. Both assays indicated a proliferative effect of 17 beta-estradiol and progesterone at physiological concentrations. This proliferative effect was also shown in feeder layer-free cultures, ruling out an indirect effect through the mesodermal cells. The capacity of the hormones to modify terminal differentiation in the culture was also studied, using colony stratification as an indicator of differentiation. Progesterone and fetal calf serum had an inhibitory effect on terminal differentiation, whereas 17 beta-estradiol induced a stimulatory action. This culture model allowed us to show a direct effect of the ovarian hormones on vaginal cells in vitro and seems to be a useful model to study hormone-cell interactions in vitro.  相似文献   

12.
Induction of IL-12 and IL-23 is essential for protective immunity against Cryptococcusneoformans. The contribution of dendritic cells vs. macrophages to IL-12/23 production in response to C. neoformans infection is unclear. Activation of conventional bone marrow-derived dendritic cells (BMDC), plasmacytoid BMDC, and bone marrow-derived macrophages (BMMPhi) was assessed by analyzing cytokine responses and the expression of MHC-II, CD86, and CD80 in each cell type. Cryptococcus neoformans induced the release of IL-12/23p40 by BMDC, but not by BMMPhi, in a TLR2- and TLR4-independent but MyD88-dependent manner. Conventional BMDC rather than plasmacytoid BMDC up-regulated MHC-II and CD86, while BMMPhi down-regulated MHC-II and CD86 in response to C. neoformans. The up-regulation of MHC-II and CD86 on BMDC required MyD88. Our data point to conventional DC as critical IL-12/23-producing antigen-presenting cells during cryptococcosis.  相似文献   

13.
17beta-estradiol exerts an antiapoptotic action in skeletal muscle cells through extranuclear ERalpha and beta. This protective action, mainly involves a non-genomic mechanism of ERK1/2 and PI3K/Akt activation and BAD phosphorylation. ERbeta plays a major role in the inhibition of apoptosis by 17beta-estradiol at the level of mitochondria, whereas ERalpha and ERbeta mediate the activation of Akt to the same extent, suggesting differential involvement of ER isoforms depending on the step of the apoptotic/survival pathway involved. The myopathies associated to estrogen deficit states may be related to the mechanisms by which estrogen regulates apoptosis.  相似文献   

14.
Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells(IKDCs).IKDCs not only secret type I and type II interferons to recognize and kill tumor cells effectively, but also express MHC-II molecules to present antigens.Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.  相似文献   

15.
16.
We have previously shown that 17beta-estradiol (E2) prevents the activation of brain macrophages, i.e. microglia cells, both in vitro and in vivo. Hormone exerts this inhibitory effect by inhibiting pro-inflammatory gene expression. In this study we further investigated on the molecular mechanism of E2 action in the RAW 264.7 macrophage cell line. We show here that these cells express the alpha-isoform of the estrogen receptor (ERalpha) and not ERbeta. Similarly to its activity in brain macrophages, E2 is able to inhibit the activation program induced by lipopolysaccharide (LPS) in RAW 264.7 cells, as shown by the inhibitory effect of hormone on the morphological conversion and matrix metalloproteinase-9 (MMP-9) expression induced by the endotoxin. In addition, we demonstrate that hormone treatment is not associated with a reduction in the steady-state expression of Toll-like receptor-4 (TLR-4) and CD14, two components of the LPS receptor complex. Our results further confirm the anti-inflammatory role of ERalpha in macrophages and propose that the mechanism of hormone action on macrophage reactivity involves signaling molecules which are down-stream effectors of the LPS membrane receptors.  相似文献   

17.
Interleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2–12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-α, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells “foamy DCs” and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A.  相似文献   

18.
In this report, we demonstrate that NADPH oxidase is activated by tumor necrosis factor-alpha (TNF-alpha) plus interferon-gamma (IFN-gamma) in human monocytic cells (THP-1 cells) differentiated with phorbol ester (PMA) and that physiological concentration of 17beta-estradiol inhibits NADPH oxidase activity in THP-1 cells stimulated with TNF-alpha plus IFN-gamma. This effect is mediated by estrogen receptor based on estrogen receptor antagonist (ICI 182, 780) that diminishes inhibition by 17beta-estradiol. This inhibition is specific in 17beta-estradiol because 17alpha-estradiol, testosterone and progesterone do not inhibit NADPH oxidase activity. Activation of NADPH oxidase induced by TNF-alpha plus IFN-gamma is caused by up-regulation of p47(phox) (cytosolic component of NADPH oxidase) expression. 17beta-Estradiol prevents the up-regulation of p47(phox) mRNA and protein expression. This prevention of p47(phox) expression depends on the inhibition of NF-kappaB activation. Our results implicate that 17beta-estradiol has an anti-atherosclerotic effects through the improvement of nitric oxide (NO) bioavailability caused by the regulation of superoxide (O(2)(-)) production.  相似文献   

19.
The rat epididymal epithelial cells revealed features of steroidogenic cells and released 17beta-estradiol (E2) into the culture medium. In steroidogenic cells, elements of the cytoskeleton due to their influence on organelle distribution are implicated in the regulation of steroidogenesis. In the present study, the morphology of cultured epididymal epithelial cells in light, scanning and transmission electron microscopes was evaluated. The organization of microtubules and microfilaments revealed by fluorescence microscopy, and the concentration of E2 in cultured medium were also studied. The epididymal epithelial cells were cultured in different conditions: in the medium with or without exogenous testosterone (T) and in the co-culture with Leydig cells as a source of androgens. The cells in co-culture located close to Leydig cells were rich in glycogen, PAS-positive substances and lipid droplets, in higher amount than the cells cultured with addition of exogenous testosterone. Stress fibers and microtubules of epididymal epithelial cells cultured with exogenous T and in co-culture with Leydig cells presented typical structure, and numerous granular protrusions appeared on the surface of the cells. Disorganization of microtubules and shortening of stress fibers as well as the smooth cell surface deprived of granular protrusions were observed in the epididymal epithelial cells cultured without T. Change of the cytoskeleton organization caused by the absence of androgen in culture medium resulted in an increased E2 secretion.  相似文献   

20.
17β—雌二醇下调血管平滑肌内皮素A型受体的表达   总被引:5,自引:0,他引:5  
Wang TH  Tan Z  Liu PQ  Lu W  Yang D  Pan JY 《生理学报》2001,53(5):380-384
为进一步探讨雌激素对心血管的保护作用,实验在双侧卵巢去势大鼠模型和培养的血管平滑肌细胞(VSMCs)上,观察17β-雌二醇(E2)对血管反应性及VSMCs增殖的影响,以RT-PCR和Western blot检测内皮素受体(ETAR)的表达,结果显示:去势雌性大鼠血管对内皮素(ET-1)的反应性明显增高,ETAR特异性受体阻断剂BQ123能完全阻断ET-1对VSMCs增殖的影响,E2能明显抑制ET-1对VSMCs增殖的作用,RT-PCR结果显示E2能抑制ETAR mRNA的表达,Western blot进一步证实E2能抑制ETAR蛋白表达,E2受体阻断剂Tamoxifen能部分抑制ET-1对VSMCs的增殖及ETAR的mRNA和蛋白 的表达。以上结果提示;ET-1促VSMCs增殖的效应主要是由ETAR介导的,雌激素能通过下调ETAR来抑制ET-1对VSMCs 促增殖的作用和血管对ET-1的反应,且此作用与雌激素受体有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号