首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ecological studies of five species of lizards were carried out on the island of Praslin, central Seychelles between July and September 1976. Quadrat sampling within four vegetation types revealed distinct habitat preferences between species. Phelsuma sundbergi occurred at highest densities in coastal vegetation, particularly coconuts Cocos nucifera , whilst Phelsuma astriata occurred at highest densities in intermediate forest, particularly in endemic palms such as Lodoicea maldivica. Within each vegetation type, both species preferred particular tree species. In coastal coconuts and Lodoicea in intermediate forest, the two species tended to occur in different sized trees. Calculations of niche breadth indicated greatest values for P. sundbergi in coastal vegetation and for P. astriata in intermediate forest. Both Phelsuma species showed a diurnal pattern of activity with some indication of temporal displacement between species in lowland and intermediate forest. Ailuronyx sechellensis was nocturnal with a relict distribution on Praslin, occurring in the quadrats on only three endemic palm species in intermediate forest. Mabuya sechellensis was by far the commonest and most widespread of the two skink species, with highest density in intermediate forest where it was probably favoured by the high proportion of palm leaf litter. Scelotes gardineri was only recorded in lowland and intermediate forest, where it occurred at low densities. Both species were diurnal, although the latter was never recorded after midday. Intermediate forest had the highest lizard biomass and species diversity whilst eroded land had the lowest. The possible origins and relationships of the two closely related Phelsuma species are discussed, together with the roles that habitat modification, predation, and interspecific competition may play.  相似文献   

2.
The ‘Vallée de Mai’ on the island of Praslin in the Seychelles group is a World Heritage Site because of its unique forest vegetation dominated by the palm Lodoicea maldivica. However, despite its great conservation importance, the stand structure, species diversity and regeneration of this forest have not previously been studied. Moreover, the conservation value of the reserve is currently threatened by invading alien plants and limited regeneration of some native species. The species composition of the forest was studied in six permanent plots (1985 and 1998) and along seven trail transects (1997). To explain potential variation in tree regeneration, the light climate within all plots was investigated using hemispherical photographs. The results reveal little change in forest structure, species diversity and regeneration in the permanent plots over the 13‐year period, but some regeneration of most woody species, presence of some alien species and a relatively high species turnover. We found no significant influence of local light climate upon forest structure, species diversity or regeneration. Although the stand characteristics seem to be relatively stable, the permanent plots and transects should be monitored in order to detect future changes in stand structure and to optimize the protection of this unique forest reserve.  相似文献   

3.
Understanding the response of threatened and functionally important island invertebrate species to plant community restoration is essential for the successful conservation of these invertebrate species. The Seychelles giant millipede (SGM), Sechelleptus seychellarum, is a threatened and functionally important macro-detritivore endemic to the Seychelles granitic islands. Here, we studied the response of this species to the ongoing forest restoration programme on Cousine Island, Seychelles. This study was conducted over an 11 year period, representing the floral succession of a formerly degraded open scrubland area, dominated by alien plants, to a closed canopy forest, dominated by planted indigenous trees. While the time span of this study was insufficient for vegetation height in the restored area to equal that in the reference natural forest, canopy closure was nevertheless comparable. We found SGM density to be an order of magnitude lower in the restored site compared to the natural forest. In contrast, SGM physical condition improved significantly in the restored site, as vegetation structure increased. Furthermore, SGM behaviour in the restored site switched from a predominantly walking to a dominantly feeding behaviour over the study period, resulting in the forest restoration programme on Cousine increasing the foraging area of the SGM by 43 %. Competition for key resources, e.g. food and day-time refuges, are suggested as possible factors limiting SGM numbers in the restored forest.  相似文献   

4.
Habitat degradation can reduce or even prevent the reproduction of previously abundant plant species. To develop appropriate management strategies, we need to understand the reasons for reduced recruitment in degraded ecosystems. The dioecious coco de mer palm (Lodoicea maldivica) produces by far the largest seeds of any plant. It is a keystone species in an ancient palm forest that occurs only on two small islands in the Seychelles, yet contemporary rates of seed production are low, especially in fragmented populations. We developed a method to infer the recent reproductive history of female trees from morphological evidence present on their inflorescences. We then applied this method to investigate the effects of habitat disturbance and soil nutrient conditions on flower and fruit production. The 57 female trees in our sample showed a 19.5‐fold variation in flower production among individuals over a seven‐year period. Only 77.2% of trees bore developing fruits (or had recently shed fruits), with the number per tree ranging from zero to 43. Flower production was positively correlated with concentrations of available soil nitrogen and potassium and did not differ significantly between closed and degraded habitat. Fruiting success was positively correlated with pollen availability, as measured by numbers and distance of neighboring male trees. Fruit set was lower in degraded habitat than in closed forest, while the proportion of abnormal fruits that failed to develop was higher in degraded habitat. Seed size recorded for a large sample of seeds collected by forest wardens varied widely, with fresh weights ranging from 1 to 18 kg. Synthesis: Shortages of both nutrients and pollen appear to limit seed production of Lodoicea in its natural habitat, with these factors affecting different stages of the reproductive process. Flower production varies widely amongst trees, while seed production is especially low in degraded habitat. The size of seeds is also very variable. We discuss the implications of these findings for managing this ecologically and economically important species.  相似文献   

5.
The fine-scale spatial genetic structure (FSGS) of plant populations is strongly influenced by patterns of seed dispersal. An extreme case of limited dispersal is found in the charismatic yet endangered palm Lodoicea maldivica, which produces large fruits (up to 20 kg) dispersed only by gravity. To investigate patterns of seed dispersal and FSGS in natural populations we sampled 1252 individual adults and regenerating offspring across the species’ natural range in the Seychelles archipelago, and characterised their genotypes at 12 microsatellite loci. The average dispersal distance was 8.7?±?0.7 m. Topography had a significant effect on seed dispersal, with plants on steep slopes exhibiting the longest distances. FSGS was intense, especially in younger cohorts. Contrary to what might be expected in a dioecious species, we found high levels of inbreeding, with most neighbouring pairs of male and female trees (≤10 m) being closely related. Nonetheless, levels of genetic diversity were relatively high and similar in the various sampling areas, although these differed in disturbance and habitat fragmentation. We discuss potential trade-offs associated with maternal resource provisioning of progeny, seed dispersal and inbreeding, and consider the implications of our findings for managing this globally significant flagship species.  相似文献   

6.
Many plant species are threatened as a result of extinction of their large-bodied frugivores all over the world. Additionally, introduced herbivores and seed predators may cause severe pressure on early stages of plant recruitment. We studied the seed dispersal and seed predation of the keystone palm Euterpe edulis on a land-bridge island with a highly impoverished frugivore fauna and overabundant seed predators, and in a continuous Atlantic forest in Brazil. While the diversity of avian seed dispersers and predators was higher on the mainland, the abundance of seed dispersers was 4-fold higher on the island. Turdus flavipes was responsible for 72% and 96% of seeds removed in the island and mainland, respectively. However, the higher density of T. flaviceps on the island did not result in higher seed removal. In fact, seed removal rate was 1.7 times lower there than on the mainland, probably due to the aggressive behavior of the major seed disperser who defend palm fruits. Seed predation, on the other hand, was markedly higher on the island, where nearly 100% of seeds were preyed upon, but only 0.3% on the mainland. As a consequence of higher seed predation the population of E. edulis has few numbers of seedlings and saplings on the island. Therefore, management of the seed predator populations on the island is a key priority for recovering the natural population of this keystone palm and the frugivores that depend on its fruits.  相似文献   

7.
A 10 year study of forest communities on Silhouette island, Seychelles demonstrates stability of forest composition in most areas over this time-scale. Areas with heavy invasion by alien species were found to be regenerating, particularly with the rapid loss of Clidemia hirta. This is attributed to the abundance of well-adapted native plants allowing competitive exclusion to take place, throughout competition for light. It was noted that invasive plant species tend to be unstable on the rocky slopes covered by native high forest. A high rate of tree fall and limited seed dispersal may reduce the impact of the invasive tree Paraserianthes falcataria in the future. Other species such as Cinnamomum verum and Psidium cattleianum may persist as major invaders due to wider seed dispersal.  相似文献   

8.
Invasive species may have negative impacts on many narrow range endemics and species restricted to oceanic islands. Predicting recent impacts of invasive species on long-lived trees is difficult because the presence of adult plants may mask population changes. We examined the impact of introduced black rats (Rattus rattus) on two palm species restricted to cloud forests and endemic to Lord Howe Island, a small oceanic island in the southern Pacific. We combined estimates of the standing size distribution of these palms with the proximal impacts of rats on fruit survival in areas baited to control rats and in unbaited areas. The size distribution of palms with trunks was comparable across baited and unbaited sites. Small juvenile palms lacking a trunk (<50 cm tall) were abundant in baited areas, but rare in unbaited sites for Lepidorrhachis mooreana, and rare or absent in 3 out of 4 unbaited Hedyscepe canterburyana sites. All ripe fruits were lost to rats in the small fruited L. mooreana. Fruit removal was widespread but less (20–54%) in H. canterburyana. Both palms showed evidence of a reduced capacity to maintain a juvenile bank of palms through regular recruitment as a consequence of over 90 years of rat impact. This will limit the ability of these species to take advantage of episodic canopy gaps. Baiting for rat control reduced fruit losses and resulted in the re-establishment of a juvenile palm bank. Conservation of both endemic palms necessitates control (or eradication) of rat populations on the unique cloud forest summits of the island.  相似文献   

9.
土壤种子库是森林群落更新的主要来源之一,对森林的演替和恢复等具有重要意义。生境片段化现象正日益严重地影响着森林群落,并可影响森林土壤种子库。研究了千岛湖地区的大陆及岛屿次生马尾松林内土壤种子库的组成及其影响因素(e.g.,岛屿面积,形状指数,隔离度和距岛屿边缘距离等)。根据大陆和岛屿的面积及边缘梯度,采用大数量小样方法,分别在土壤种子库最大化(初冬,2015年12月)和最小化(晚春,2016年4月)时期对马尾松林内土壤进行了机械取样。对土壤样品进行萌发实验,检测了两个时期的土壤种子库上层(0—2 cm)和下层(2—5 cm)种子组成,并通过广义线性混合效应模型等手段分析其影响因素。结果显示:(1)所有316个土壤样本中,萌发出幼苗1422株,隶属于29科、40属、41种。其中,木本植物幼苗占13种1024株,草本占28种398株。(2)Jaccard指数和相关性分析均显示初冬、晚春时期的土壤种子库组成具有很高的相似性;土壤种子库上、下层组成的相似性也很高。(3)广义线性混合效应模型分析显示,在大陆和岛屿上,土壤种子库下层种子含量低于上层;而大陆样地土壤种子库中的木本植物种子数较岛屿样地高。岛屿上,土壤种子库中的种子数随土层的加深而降低;随边缘梯度升高也下降,尤其是草本植物的种子。对于岛屿上的木本植物,不耐阴种的种子数量远大于耐阴种,尤其是土壤下层。表明千岛湖地区马尾松林内土壤种子库组成受到生境片段化的影响,进而可能作用于该类型森林群落的演替。  相似文献   

10.
Spatial and temporal patterns of seed rain impact plant fitness, genetic and demographic structure of plant populations, and species' interactions. Because plants are sessile, they rely on biotic and abiotic dispersal agents to move their seeds. The relative importance of these dispersal agents may shift throughout the year. In tropical forests, seed dispersal of epiphytes constitutes a major but hitherto unknown portion of seed rain ecology. For the first time, we report on patterns of seed rain for both epiphytic and terrestrial plants across an entire year in a Neotropical montane forest. To examine seed rain, we placed traps in the canopy and on the ground. We analyzed seed dispersal syndrome (bird, mammal, wind) and plant habit (epiphyte, liana, shrub, small tree, large tree) across all seasons of the year (dry, misty, wet). We found that the community of species collected in canopy traps was significantly different from the community in ground traps. Epiphytes were the most common plant habit found in canopy traps, while large trees were most common in ground traps. Species with bird‐dispersed seeds dominated all traps. Species richness was significantly higher during the dry season in ground traps, but did not vary across seasons in canopy traps. Our results highlight the distinct seed rain found in the canopy and on the ground and underscore the importance of frugivores for dispersing both arboreal and terrestrial plants in tropical ecosystems.  相似文献   

11.
Species that are endemic to isolated islands often differ dramatically in size from their mainland relatives, for reasons that are poorly understood. While decades of research have sought to better understand insular size changes in animals, far fewer studies have investigated insular size changes in plants. Here, I test for changes in plant stature, seed size and leaf area in a woody shrub (Alyxia ruscifolia, Apocynaceae), which inhabits both the continent of Australia, and Lord Howe Island, a subtropical island located 600 km off Australia's east coast. Results showed that island plants became reproductively mature at earlier stages of ontogeny than mainland plants, and that mature plants were taller on the mainland, providing a rare example of dwarfism in plants. Conversely, island plants produced larger seeds, which might make them more competitive as seedlings. Seeds produced by island plants were also less circular and more oblong in shape than their mainland counterparts, perhaps to facilitate their dispersal by avian frugivores with limited gape sizes. Lastly, island and mainland plants had similar average leaf sizes. However, juvenile plants on the mainland produced smaller, more needle‐shaped leaves with larger terminal spines relative to adult plants, which may help protect them against large, ground‐dwelling herbivores. On the other hand, island plants showed weaker ontogenetic shifts in leaf morphology in the absence of large herbivores. When interpreted jointly, results indicate that stature, seed size and leaf area are on separate evolutionary trajectories in A. ruscifolia, which appear to be determined by a complex suite of disparate selection pressures between Lord Howe Island and the mainland.  相似文献   

12.
About 45 palm species occur in the Atlantic forest of Brazil, and most of them are affected by loss of seed dispersers resulting from forest fragmentation and hunting. Here we report the effects of habitat loss and defaunation on the seed dispersal system of an endemic palm, Astrocaryum aculeatissimum . We evaluated seed removal, insect and rodent seed predation, and scatter-hoarding in nine sites, ranging from 19 ha to 79 000 ha. We report the seedling, juvenile and adult palm densities in this range of sites. Endocarps remaining beneath the parent palm had a higher probability of being preyed upon by insects in small, mostly fragmented and more defaunated sites. The frequency of successful seed removal, scatter-hoarding and consumption by rodents increased in the larger, less defaunated sites. Successful removal and dispersal collapsed in small (< 1000 ha), highly defaunated sites and frequently resulted in low densities of both seedlings and juveniles. Our results indicate that a large fraction of Atlantic forest palms that rely on scatter-hoarding rodents may become regionally extinct due to forest fragmentation and defaunation. Current management practices including palm extraction and hunting pressure have a lasting effect on Atlantic forest palm regeneration by severely limiting successful recruitment of prereproductive individuals. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 141–149.  相似文献   

13.
The establishment of plants depends crucially on where seeds are deposited in the environment. Some authors suggest that in forest understory seed predation is lower than in gaps, and higher than at the forest edge. However, most studies have been carried out in large forest patches and very little is known about the effects of microhabitat conditions on seed predation in forest fragments. We evaluated the effects of three microhabitats (gaps, forest edge, and understory) on seed predation of two palm species (Euterpe edulis and Syagrus romanzoffiana) in two semi-deciduous forest fragments (230 and 2100 ha) in southeast Brazil. Our objective was to test two hypotheses: (1) Low rodent abundance in small fragments as a result of meso-predator action levels leads to lower seed predation in small fragments. (2) Most mammal species in small fragments are generalists with respect to diet and habitat, so that seed predation is similar in different microhabitats (gaps, forest edge and understory) in the small fragment, but not in the larger one. The study community of small fragments is usually composed of generalist species (in diet and habitat aspects), so we expected the same rate of seed predation among microhabitats (gaps, forest edge and understory) in the tested smaller fragment. The experiment was carried out in the dry season (for E. edulis) and in the wet season (for S. romanzoffiana) in 1999. We conclude that post-dispersal seed predation in forest fragments can be directly connected with mammal communities, reflecting their historical and ecological aspects.  相似文献   

14.
This study tested three hypotheses regarding how plants respond to the spatial heterogeneity in light availability in the rain forest understory: (1) understory plants occur preferentially in the lighter parts of the understory; (2) under–story palms are more shade tolerant than other understory plants; (3) rain forest plants differ in their ontogenetic response to understory light conditions. The study was carried out in old–growth rain forest in the Yasuní National Park, Amazonian Ecuador. The hypotheses were tested by comparing the distributions of 20 plant species (1454 individuals) over microsites with differing degrees of exposure to canopy gaps to the background distribution of these microsites in the forest. The gap exposure of a given microsite was described by an index based on the number and size of gaps in the canopy to which the site was exposed. Two plant height classes were studied: 0.80–2.49 and 2.50–5 m. The first and third hypotheses were accepted, while the second hypothesis was rejected. The results for the individual species corresponded well with what is known from earlier studies about the ecology of these species or close relatives, suggesting that the patterns observed can be generalized for Neotropical rain forests. Notably, the most abundant species in the study represent several different life history strategies. Thus, abundance in the rain forest understory can be achieved by several different strategies. This suggests that niche differentiation in terms of response to small changes in understory light conditions may be an important factor in the maintenance of the high local plant species richness of tropical rain forests.  相似文献   

15.
The reproductive capacities of dioecious plant species may be limited by severe pollen limitation and narrow seed shadows for the two reasons. First, they are unable to self‐pollinate, and seed production occurs only with pollinator movement from males to females. Second, only 50% of the individuals in populations contribute to seed production. Despite these handicaps, dioecious plants maintain their populations in plant communities with cooccurring cosexual plants, and no substantial difference in population growth rates has been found between dioecious and cosexual plants. Hence, dioecious plants are thought to mitigate these disadvantages by adopting ecological traits, such as insect pollination, animal‐dispersed fleshy fruits, and precocious flowering. We studied the relationship between flowering and plant size in 30 woody species with different sex expressions, leaf habits, fruit types, and maximum plant sizes. The study site was located in an evergreen broad‐leaved forest on the island of Honshu, Japan. A phylogenetic linear regression model showed that dioecious species tended to mature at smaller sizes than did cosexual taxa. At the population level, given equal plant densities and reproductive efforts, the precocity of dioecious plants could serve as one of the factors that mitigate the limitations of pollen and seed‐shadow handicaps by increasing the density of reproductive individuals in the population. At the individual level, smaller size of onset of flowering may play a role in enhancing reproductive success over a lifetime by increasing reproductive opportunities. We discussed the possible effect of the relationship between precocity and some ecological traits of dioecious plants, such as small flowers pollinated by unspecialized insects, fleshy fruit dispersed by animals, and their preferential occurrence in the tropics and in island habitats. The universality of precocity among dioecious plants should be investigated in diverse plant communities. Such studies will increase our understanding of the evolution of plant breeding systems.  相似文献   

16.
Soil seed banks are the ecological memory of plant communities and might represent their regeneration potential. This study examines the soil seed bank in hardwood floodplain forests of the biosphere reserve “Valle del Ticino” (Northern Italy) to find out whether the natural forest vegetation can potentially be restored by the soil seed bank. We compared near natural forests of the phytosociological association Polygonato multiflori–Quercetum roboris with stands dominated by the nonnative tree species Robinia pseudoacacia and Prunus serotina in order to investigate whether the composition of the soil seed bank is significantly influenced by the composition of the main canopy tree species and soil properties. Soil seed bank samples were taken from 20 randomly selected plots in stands that were differentiated into four groups related to the dominant forest canopy species. The germinated plants were counted and their species determined. A total of 2,427 plants belonging to 84 species were recorded. The composition of the dominant tree species and soil parameters significantly influence the composition of the seed bank. The similarity with the standing vegetation was very low. Only 13% of the species in the soil seed bank represent the target vegetation. The low percentage of target species and the high percentage of nonnative species imply that the regeneration of near‐natural forest vegetation from the soil seed bank is not feasible. Consequently, disturbances that may activate the soil seed bank should be minimized. Thus, we recommend stopping the mechanical removal of the nonnative tree species in the Ticino Park .  相似文献   

17.
Knowledge of breeding ecology is required for many conservation interventions. The Seychelles Black Parrot Coracopsis barklyi, endemic to the island of Praslin, is vulnerable to extinction. We aimed to improve understanding of C. barklyi breeding ecology to aid conservation planning. We present the results of four years of research, including nesting cavity characteristics and availability, reproductive success, breeding parameters, parental behaviour and reproductive strategy. Thirty-six breeding attempts were studied over the four seasons. Nests were mainly located in Coco de Mer palms Lodoicea maldivica. Deeper cavities with more canopy cover were preferred. There may be a shortage of high-quality nesting cavities in intensive breeding seasons. Average clutch size was 2.2 eggs, incubation period was c. 15 d and egg fertility was 71%. Rats were key nest predators, causing the failure of up to 33% of breeding attempts. The probability of nest success was 53%. At least 57% of fledglings survived their first year. This species breeds cooperatively and practices a highly unusual side-by-side copulation. We discuss the implications of the results in the context of former, ongoing and potential conservation measures for C. barklyi including translocation, invasive species management, nest box provisioning, habitat restoration and further research.  相似文献   

18.
Tropical island species and ecosystems are threatened worldwide as a result of increasing human pressure. Yet some of these islands also lend themselves to restoration, as they are physically defined units that can be given focused attention, as long as resources are available and clear conservation targets are set. Cousine Island, Seychelles, is a tropical island that has received such intensive restoration. From a highly degraded island in the 1960s, the island has now been restored to what is believed to be a semblance of the natural state. All alien vertebrates have been eradicated, as have 25 invasive alien plants. Cultivated plants are now confined to one small section of the island. Poaching of nesting marine turtles has been stopped, leading to an increase in turtle breeding numbers. The shearwater population has increased in size with poaching activities under control. The Sooty tern has also returned to the island to breed. The coastal plain has been restored with over 2,500 indigenous shrubs and trees, which have now grown into a forest carpet. There are strict quarantine procedures on the island, keeping it free of rats, mice, various alien invertebrates and potentially invasive alien plants. Three threatened Seychelles endemic land birds (Seychelles warbler, Seychelles magpie robin and Seychelles white-eye) have been introduced and are thriving, with these introductions contributing to both the magpie robin and the white-eye being downgraded from CR to EN (the warbler remains at VU). Ecotourism, and nature conservation for the local inhabitants, have been introduced in a way that does not reduce the improved compositional, structural and functional biodiversity of the island. The result of the restoration effort appears to be sustainable in the long term, although challenges still remain, especially with regards to adequate clean water and a non-polluting power supply on the island. Cousine is thus paving the way in the art and science of tropical island restoration as a legacy for future generations.  相似文献   

19.
Sercu  Bram K.  Moeneclaey  Iris  Goeminne  Birgit  Bonte  Dries  Baeten  Lander 《Plant Ecology》2021,222(6):749-760

Temperate forest understorey plants are subjected to a strong seasonality in their optimal growing conditions. In winter and early spring, low temperatures are suboptimal for plant growth while light becomes limited later in spring season. We can thus expect that differences in plant phenology in relation to spatiotemporal environmental variation will lead to differences in reproductive output, and hence selection. We specifically studied whether early flowering, a paradoxical pattern that is observed in many plant species, is an adaptive strategy, and whether selection for early flowering was confounded with selection for flower duration or was attributable to environmental variables. We used Geum urbanum as a study species to investigate the effect of relevant environmental factors on the species’ flowering phenology and the consequences for plant reproductive output. We monitored the phenology of four to six plants in each of ten locations in a temperate deciduous forest (Belgium). We first quantified variation in flowering time within individuals and related this temporal variation to individual flower reproductive output. Then, we studied inter-individual variation here-in and linked this to reproduction at the plant level, hence studying the selection differential. We found that flowering within individual plants of Geum urbanum was spread over a long period from June to October. Reproductive output of individual flowers, measured as total seed mass per flower, declined during the season. We found no indication for selection for early flowering but rather for longer flower duration. Larger plants had an earlier flowering onset and a higher seed mass, which suggests that these factors covary and are condition dependent. None of the studied environmental variables could explain plant size, although soil pH and to a lesser extent light availability had a positive direct effect on seed mass per plant. Finally, we suggest that the high intra-individual variation in flowering time, which might be a risk spreading strategy of the plant in the presence of seed predation, limits the potential for selection on flowering phenology.

  相似文献   

20.

Aim

The soil seed bank is a key component of the biodiversity of plant communities, but various aspects of its functioning in temperate forest ecosystems are still unknown. We here adopted a trait-based approach to investigate the effects of macro- and microclimatic gradients on the juvenile plant communities from the realized seed bank of two types of European temperate forest.

Location

Oak-dominated forests in Italy and Belgium.

Methods

We analysed the variation of key functional traits (plant height, leaf area, leaf dry weight, specific leaf area and leaf number) of juvenile plants from the realised soil seed bank in relation to elevation (from 0 to 800 m a.s.l.), forest type (thinned and unthinned forest) and distance to the forest edge. We translocated soil samples from the forest core to the edge (and vice versa) and from high- to low-elevation forests to test the effects of edge and warming respectively.

Results

Taller communities developed at the forest edge due to higher light availability and warmer temperatures. The translocation from the core to the edge did not significantly modify mean trait values. Instead, the shadier and cooler microclimate of the forest core reduced the mean leaf area, mean dry weight, height and leaf number in the communities realised from the edge soil. The translocation from high- to lowland forests led to increased values for all traits (except specific leaf area). Edge vs core trait variation was more driven by intraspecific variability, whereas the translocation from high- to low-elevation forests caused trait changes mostly due to species turnover.

Conclusions

Global warming might result in a functional shift of the understorey due to both an early filtering effect on the seedlings from soil seed banks and their adaptive trait adjustments to temperature increase. Furthermore, our study underpins the importance of edge vs core microclimate in driving the functional composition of the realised soil seed bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号