首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lystbeige (beige) mice crossed with LDL receptor-deficient (LDLr-/-) mice had a distinct atherosclerotic lesion morphology that was not observed in LDLr-/- mice. This morphology is often associated with a stable plaque phenotype. We hypothesized that macrophage expression of the beige mutation accounted for this distinct morphology. Cultured bone marrow-derived macrophages from LDLr-/- and beige,LDLr-/- mice were compared for their ability to accumulate cholesterol, efflux cholesterol, migrate in response to chemotactic stimuli through Matrigel-coated membranes, and express matrix metalloproteinase 9 (MMP9). No differences in cholesterol metabolism were identified. Beige,LDLr-/- macrophage invasion in vitro appeared to be less than LDLr-/- macrophage invasion but did not achieve significance. Nevertheless, tumor necrosis factor-alpha-induced MMP9 expression, secretion, and enzymatic activity of beige,LDLr-/- macrophages were all significantly decreased compared with those of LDLr-/- macrophages (P < 0.05). For in vivo analyses of macrophage function, bone marrow transplantation (BMT) studies were performed. LDLr-/- mice and beige,LDLr-/- mice were irradiated and reconstituted with wild-type or beige bone marrow from mice expressing green fluorescent protein (GFP). Identification of GFP cells provided for direct identification of donor-derived cells within lesions. Only expression of the beige mutation in the BMT recipients altered the macrophage location and collagen content of the lesions. These results suggested that impaired macrophage function by itself did not account for the stable lesion morphology of beige,LDLr-/- double-mutant mice.  相似文献   

2.
In the previous study, we generated mice lacking thromboxane A2 receptor (TP) and apolipoprotein E, apoE(-/-)TP(-/-) mice, and reported that the double knockout mice developed markedly smaller atherosclerotic lesions than those in apoE(-/-) mice. To investigate the mechanism responsible for reduced atherosclerosis in apoE(-/-)TP(-/-) mice, we examined the role of TP in bone marrow (BM)-derived cells in the development of the atherosclerotic lesions. When we compared the function of macrophages in apoE(-/-) and in apoE(-/-)TP(-/-) mouse in vitro, there was no difference in the expression levels of cytokines and chemokines after stimulation with lipopolysaccharide. We then transplanted the BM from either apoE(-/-) or apoE(-/-)TP(-/-) mice to either apoE(-/-) or apoE(-/-)TP(-/-) mice after sublethal irradiation. After 12 weeks with high fat diet, we analyzed the atherosclerotic lesion of aortic sinus. When the BM from apoE(-/-) or apoE(-/-)TP(-/-) mice was transplanted to apoE(-/-) mice, the lesion size was almost the same as that of apoE(-/-) mice without BM transplantation. In contrast, when the BM from apoE(-/-) or apoE(-/-)TP(-/-) mice was transplanted to apoE(-/-)TP(-/-) mice, the lesion size was markedly reduced. These results indicate that the protection of atherogenesis in TP(-/-) mice is not associated with TP in BM-derived cells.  相似文献   

3.
Accumulation of oxidized lipids in the arterial wall contributes to atherosclerosis. Glutathione peroxidase-4 (GPx4) is a hydroperoxide scavenger that removes oxidative modifications from lipids such as free fatty acids, cholesterols, and phospholipids. Here, we set out to assess the effects of GPx4 overexpression on atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice. The results revealed that atherosclerotic lesions in the aortic tree and aortic sinus of ApoE(-/-) mice overexpressing GPx4 (hGPx4Tg/ApoE(-/-)) were significantly smaller than those of ApoE(-/-) control mice. GPx4 overexpression also diminished signs of advanced lesions in the aortic sinus, as seen by a decreased occurrence of fibrous caps and acellular areas among hGPx4Tg/ApoE(-/-) animals. This delay of atherosclerosis in hGPx4Tg/ApoE(-/-) mice correlated with reduced aortic F(2)-isoprostane levels (R(2)=0.75, p<0.01). In addition, overexpression of GPx4 lessened atherogenic events induced by the oxidized lipids lysophosphatidylcholine and 7-ketocholesterol, including upregulated expression of adhesion molecules in endothelial cells and adhesion of monocytes to endothelial cells, as well as endothelial necrosis and apoptosis. These results suggest that overexpression of GPx4 inhibits the development of atherosclerosis by decreasing lipid peroxidation and inhibiting the sensitivity of vascular cells to oxidized lipids.  相似文献   

4.
Successful immune reconstitution would enhance resistance of beige/scid mice to chronic infection with Mycobacterium avium subspecies paratuberculosis, but may cause damage to intestinal tissue. Therefore, we investigated the effect of adoptive transfer of BALB/c mouse splenocytes on lesion severity and intestinal physiology in beige/scid mice infected with M. paratuberculosis. Mice were inoculated intraperitoneally (i.p.) with M. paratuberculosis, and two weeks later were inoculated i.p. with viable spleen cells from immune-competent BALB/c mice. Mice were necropsied 12 weeks after infection when engraftment of lymphocytes, clinical disease, pathologic lesions, and intestinal electrophysiologic parameters were evaluated. Lymphocytes were rare in control beige/scid mice not inoculated with spleen cells. In contrast, high numbers of CD4+, CD8+, and B220+ lymphocytes were detected in the spleen of all beige/scid mice (n = 24) inoculated with spleen cells, indicating that adoptive transfer resulted in successful engraftment of donor lymphocytes (immune reconstitution). Immune reconstitution of M. paratuberculosis-infected beige/ scid mice significantly reduced the severity of clinical disease and pathologic lesions, and numbers of bacteria in the liver. However, intestinal electrophysiologic parameters studied in vitro indicated that intestinal tissues from reconstituted beige/scid mice had reduced short-circuit current responses (due to reduced ion secretion) following electrical, glucose, and forskolin stimulation. These abnormal responses suggested that neural or epithelial cells in the intestine were damaged. We conclude that successful immune reconstitution of beige/scid mice enhance their resistance to M. paratuberculosis infection, but may cause pathophysiologic changes associated with intestinal inflammation.  相似文献   

5.
Inflammatory processes are involved with all phases of atherosclerotic lesion growth. Tumor necrosis factor-alpha (TNFalpha) is an inflammatory cytokine that is thought to contribute to lesion development. Lymphotoxin-alpha (LTalpha) is also a proinflammatory cytokine with homology to TNFalpha. However, its presence or function in lesion development has not been investigated. To study the role of these molecules in atherosclerosis, the expression of these cytokines in atherosclerotic lesions was examined. The presence of both cytokines was observed within aortic sinus fatty streak lesions. To determine the function of these molecules in regulating lesion growth, mice deficient for TNFalpha or LTalpha were examined for induction of atherosclerosis. Surprisingly, loss of TNFalpha did not alter lesion development compared with wild-type mice. This brings doubt to the generally held concept that TNFalpha is a "proatherogenic cytokine." However, LTalpha deficiency resulted in a 62% reduction in lesion size. This demonstrates an unexpected role for LTalpha in promoting lesion growth. The presence of LTalpha was observed in aortic sinus lesions suggesting a direct role of LTalpha in modulating lesion growth. To determine which receptor mediated these responses, diet-induced atherosclerosis in mice deficient for each of the TNF receptors, termed p55 and p75, was examined. Results demonstrated that loss of p55 resulted in increased lesion development, but loss of p75 did not alter lesion size. The disparity in results between ligand- and receptor-deficient mice suggests there are undefined members of the TNF ligand and receptor signaling pathway involved with regulating atherogenesis.  相似文献   

6.
The role of IL-17 in atherogenesis remains controversial. We previously reported that the TLR/MyD88 signaling pathway plays an important role in high-fat diet as well as Chlamydophila pneumoniae infection-mediated acceleration of atherosclerosis in apolipoprotein E-deficient mice. In this study, we investigated the role of the IL-17A in high-fat diet (HFD)- and C. pneumoniae-induced acceleration of atherosclerosis. The aortic sinus plaque and aortic lesion size and lipid composition as well as macrophage accumulation in the lesions were significantly diminished in IL-17A(-/-) mice fed an HFD compared with wild-type (WT) C57BL/6 control mice. As expected, C. pneumoniae infection led to a significant increase in size and lipid content of the atherosclerotic lesions in WT mice. However, IL-17A(-/-) mice developed significantly less acceleration of lesion size following C. pneumoniae infection compared with WT control despite similar levels of blood cholesterol levels. Furthermore, C. pneumoniae infection in WT but not in IL-17A(-/-) mice was associated with significant increases in serum concentrations of IL-12p40, CCL2, IFN-γ, and numbers of macrophages in their plaques. Additionally, in vitro studies suggest that IL-17A activates vascular endothelial cells, which secrete cytokines that in turn enhance foam cell formation in macrophages. Taken together, our data suggest that IL-17A is proatherogenic and that it plays an important role in both diet-induced atherosclerotic lesion development, and C. pneumoniae infection-mediated acceleration of atherosclerotic lesions in the presence of HFD.  相似文献   

7.
The serine palmitoyl transferase inhibitor myriocin potently suppresses the development of atherosclerosis in apolipoprotein E (apoE) gene knockout (apoE(-/-)) mice fed a high-fat diet. This is associated with reduced plasma sphingomyelin (SM) and glycosphingolipid levels. Furthermore, oral administration of myriocin decreases plasma cholesterol and triglyceride (TG) levels. Here, we aimed to determine whether myriocin could inhibit the progression (or stimulate the regression) of established atherosclerotic lesions and to examine potential changes in hepatic and plasma lipid concentrations. Adult apoE(-/-) mice were fed a high-fat diet for 30 days, and lesion formation was histologically confirmed. Replicate groups of mice were then transferred to either regular chow or chow containing myriocin (0.3 mg/kg/day) and maintained for a further 60 days. Myriocin significantly inhibited the progression of established atherosclerosis when combined lesion areas (aortic sinus, arch, and celiac branch point) were measured. Although the inhibition of lesion progression was observed mainly in the distal regions of the aorta, regression of lesion size was not detected. The inhibition of lesion progression was associated with reductions in hepatic and plasma SM, cholesterol, and TG levels and increased hepatic and plasma apoA-I levels, indicating that the modulation of pathways associated with several classes of atherogenic lipids may be involved.  相似文献   

8.
Murine norovirus (MNV) is prevalent in rodent facilities in the United States. Because MNV has a tropism for macrophages and dendritic cells, we hypothesized that it may alter phenotypes of murine models of inflammatory diseases, such as obesity and atherosclerosis. We examined whether MNV infection influences phenotypes associated with diet-induced obesity and atherosclerosis by using Ldlr(-/-) mice. Male Ldlr(-/-) mice were maintained on either a diabetogenic or high-fat diet for 16 wk, inoculated with either MNV or vehicle, and monitored for changes in body weight, blood glucose, glucose tolerance, and insulin sensitivity. Influence of MNV on atherosclerosis was analyzed by determining aortic sinus lesion area. Under both dietary regimens, MNV-infected and control mice gained similar amounts of weight and developed similar degrees of insulin resistance. However, MNV infection was associated with significant increases in aortic sinus lesion area and macrophage content in Ldlr(-/-) mice fed a high-fat diet but not those fed a diabetogenic diet. In conclusion, MNV infection exacerbates atherosclerosis in Ldlr(-/-) mice fed a high-fat diet but does not influence obesity- and diabetes-related phenotypes. Increased lesion size was associated with increased macrophages, suggesting that MNV may influence macrophage activation or accumulation in the lesion area.  相似文献   

9.
Inducible NO synthase (iNOS) present in human atherosclerotic plaques could contribute to the inflammatory process of plaque development. The role of iNOS in atherosclerosis was tested directly by evaluating the development of lesions in atherosclerosis-susceptible apolipoprotein E (apoE)-/- mice that were also deficient in iNOS. ApoE-/- and iNOS-/- mice were cross-bred to produce apoE-/-/iNOS-/- mice and apoE-/-/iNOS+/+ controls. Males and females were placed on a high fat diet at the time of weaning, and atherosclerosis was evaluated at two time points by different methods. The deficiency in iNOS had no effect on plasma cholesterol, triglyceride, or nitrate levels. Morphometric measurement of lesion area in the aortic root at 16 wk showed a 30-50% reduction in apoE-/-/iNOS-/- mice compared with apoE-/-/iNOS+/+ mice. Although the size of the lesions in apoE-/-/iNOS-/- mice was reduced, the lesions maintained a ratio of fibrotic:foam cell-rich:necrotic areas that was similar to controls. Biochemical measurements of aortic cholesterol in additional groups of mice at 22 wk revealed significant 45-70% reductions in both male and female apoE-/-/iNOS-/- mice compared with control mice. The results indicate that iNOS contributes to the size of atherosclerotic lesions in apoE-deficient mice, perhaps through a direct effect at the site of the lesion.  相似文献   

10.
Several clinical and angiographic intervention trials have shown that fibrate treatment leads to a reduction of the coronary events associated to atherosclerosis. Fibrates are ligands for peroxisome proliferator-activated receptor alpha (PPARalpha) that modulate risk factors related to atherosclerosis by acting at both systemic and vascular levels. Here, we investigated the effect of treatment with the PPARalpha agonist fenofibrate (FF) on the development of atherosclerotic lesions in apolipoprotein (apo) E-deficient mice and human apoA-I transgenic apoE-deficient (hapoA-I Tg x apoE-deficient) mice fed a Western diet. In apoE-deficient mice, plasma lipid levels were increased by FF treatment with no alteration in the cholesterol distribution profile. FF treatment did not reduce atherosclerotic lesion surface area in the aortic sinus of 5-month-old apoE-deficient mice. By contrast, FF treatment decreased total cholesterol and esterified cholesterol contents in descending aortas of these mice, an effect that was more pronounced in older mice exhibiting more advanced lesions. Furthermore, FF treatment reduced MCP-1 mRNA levels in the descending aortas of apoE-deficient mice, whereas ABCA-1 expression levels were maintained despite a significant reduction of aortic cholesterol content. In apoE-deficient mice expressing a human apoA-I transgene, FF increased human apoA-I plasma and hepatic mRNA levels without affecting plasma lipid levels. This increase in human apoA-I expression was accompanied by a significant reduction in the lesion surface area in the aortic sinus. These data indicate that the PPARalpha agonist fenofibrate reduces atherosclerosis in these animal models of atherosclerosis.  相似文献   

11.
Tanshinone II-A (Tan), a bioactive diterpene isolated from Salvia miltiorrhiza Bunge (Danshen), possesses anti-oxidant and anti-inflammatory activities. The present study investigated whether Tan can decrease and stabilize atherosclerotic plaques in Apolipoprotein-E knockout (ApoE(-/-)) mice maintained on a high cholesterol diet (HCD). Six week-old mice challenged with a HCD were randomly assigned to 4 groups: (a) C57BL/6J; (b) ApoE(-/-); (c) ApoE(-/-)+Tan-30 (30 mg/kg/d); (d) ApoE(-/-)+Tan-10 (10mg/kg/d). After 16 weeks of intervention, Tan treated mice showed decreased atherosclerotic lesion size in the aortic sinus and en face aorta. Furthermore, immunohistochemical analysis revealed that Tan rendered the lesion composition a more stable phenotype as evidenced by reduced necrotic cores, decreased macrophage infiltration, and increased smooth muscle cell and collagen contents. Tan also significantly reduced in situ superoxide anion production, aortic expression of NF-κB and matrix metalloproteinase-9 (MMP-9). In vitro treatment of RAW264.7 macrophages with Tan significantly suppressed oxidized LDL-induced reactive oxygen species production, pro-inflammatory cytokine (IL-6, TNF-α, MCP-1) expression, and MMP-9 activity. Tan attenuates the development of atherosclerotic lesions and promotes plaque stability in ApoE(-/-) mice by reducing vascular oxidative stress and inflammatory response. Our findings highlight Tan as a potential therapeutic agent to prevent atherosclerotic cardiovascular diseases.  相似文献   

12.
To establish a mouse model of accelerated atherosclerosis in lupus, we generated apolipoprotein E-deficient (apoE(-/-)) and Fas(lpr/lpr) (Fas(-/-)) C57BL/6 mice. On a normal chow diet, 5 month old apoE(-/-)Fas(-/-) mice had enlarged glomerular tuft areas, severe proteinuria, increased circulating autoantibody levels, and increased apoptotic cells in renal and vascular lesions compared with either single knockout mice. Also, double knockout mice developed increased atherosclerotic lesions but decreased serum levels of total and non-HDL cholesterol compared with apoE(-/-)Fas(+/+) littermates. Moreover, female apoE(-/-)Fas(-/-) mice had lower vertebral bone mineral density (BMD) and bone volume density (BV/TV) than age-matched female apoE(-/-)Fas(+/+) mice. Compared with apoE(-/-)Fas(+/+) and apoE(+/+)Fas(-/-) mice, apoE(-/-)Fas(-/-) mice had decreased circulating oxidized phospholipid (OxPL) content on apoB-100 containing lipoprotein particles and increased serum IgG antibodies to OxPL, which were significantly correlated with aortic lesion areas (r = 0.58), glomerular tuft areas (r = 0.87), BMD (r = -0.57), and BV/TV (r = -0.72). These results suggest that the apoE(-/-)Fas(-/-) mouse model might be used to study atherosclerosis and osteopenia in lupus. Correlations of IgG anti-OxPL with lupus-like disease, atherosclerosis, and bone loss suggested a shared pathway of these disease processes.  相似文献   

13.
Innate immunity and, notably, Toll-like receptors (TLR), have an important role in atherogenesis. We have tested the hypothesis that the selective loss of TLR-2 by cells of bone marrow (BM) origin will protect low-density receptor-deficient (Ldlr (-/-)) mice from both early- and late-stage atherosclerosis. BM cells from Tlr2(+/+) and Tlr2(-/-) littermates were used to reconstitute lethally irradiated Ldlr(-/-) mice. Following a recovery period, mice were placed either on a diet containing 21% saturated fat - 0.15% cholesterol for 8?weeks to study early-stage atherosclerosis, or on a diet richer in cholesterol (1.5%) for 16?weeks to study late-stage atherosclerosis. Donor cell Tlr2 genotype did not alter serum cholesterol levels or lipoprotein profiles in recipient animals. After 8?weeks on the 0.15% cholesterol diet, deficiency of TLR-2 expression on cells of BM origin reduced atherosclerosis in the aortic root and the aortic arch in both genders of mice. In contrast, the BM recipients who received the 1.5% cholesterol diet for 16?weeks showed much larger lesions in the aortic root, and TLR-2 deficiency in BM cells failed to provide protection. Thus, TLR-2 expression in BM-derived cells contributes primarily to early stage atherosclerosis.  相似文献   

14.
Ezetimibe (EZE), an inhibitor of cholesterol absorption, reduces atherosclerosis in apolipoprotein E-deficient (apoE(-/-)) mice. The matrix protein ED-B fibronectin (ED-B) is upregulated in atherosclerotic lesions. Using a novel conjugate for near-infrared fluorescence (NIRF) imaging targeting ED-B, we studied the effect of EZE on plaque lesion formation in apoE(-/-) mice. ApoE(-/-) mice received EZE (5 mug/kg/d) or chow up to the age of 4, 6, and 8 months. NIRF imaging of aortic lesions was performed 24 hours after intravenous application ex vivo and in vivo. Plaque lesion formation was analyzed by histology and immunohistochemistry. Aortic lesion formation detected by Sudan staining and NIRF imaging was significantly reduced at 6 and 8 months (p < .001). Plaque areas determined by NIRF imaging significantly correlated with Sudan staining (p < .001). EZE treatment resulted in a significant reduction in plaque macrophage and ED-B immunoreactivity (both p < .05) in brachiocephalic lesions. There was a significant reduction in plaque size in brachiocephalic arteries in 8-month-old mice treated with EZE compared with mice during short-term treatment (p < .05), indicating EZE plaque regression. Targeted NIRF imaging showed a correlation to histologic lesion extension during therapeutical intervention in experimental atherosclerosis.  相似文献   

15.
Oxidative stress is thought to contribute to the initiation and progression of atherosclerosis. As glutathione peroxidase-1 (Gpx1) is an antioxidant enzyme that detoxifies lipid hydroperoxides, we tested the impact of Gpx1 deficiency on atherosclerotic processes and antioxidant enzyme expression in mice fed a high-fat diet (HFD). After 12 weeks of HFD, atherosclerotic lesions at the aortic sinus were of similar size in control and Gpx1-deficient mice. However, after 20 weeks of HFD, lesion size increased further in control but not in Gpx1-deficient mice, even though plasma and aortic wall markers of oxidative damage did not differ between groups. In control mice, the expression of Gpx1 increased and that of Gpx3 decreased at the aortic sinus after 20 weeks of HFD, with no change in the expression of Gpx2, Gpx4, catalase, peroxiredoxin-6, glutaredoxin-1 and -2, or thioredoxin-1 and -2. By comparison, in Gpx1-deficient mice, the expression of antioxidant genes was unaltered except for a decrease in glutaredoxin-1 and an increase in glutaredoxin-2. These changes were associated with increased expression of the proinflammatory marker monocyte chemoattractant protein-1 in control mice but not in Gpx1-deficient mice. In summary, a specific deficiency in Gpx1 was not accompanied by an increase in markers of oxidative damage or increased atherosclerosis in a murine model of HFD-induced atherogenesis.  相似文献   

16.
Systemic phospholipid transfer protein (PLTP) is a recognized risk factor for coronary heart disease. In apolipoprotein E-deficient mice, systemic PLTP deficiency is atheroprotective, whereas PLTP overexpression is proatherogenic. As expected, we also observed significantly smaller lesions (P < 0.0001) in hypercholesterolemic double mutant low density lipoprotein receptor-deficient (LDLr(-/-)) PLTP-deficient (PLTP(-/-)) mice compared with LDLr(-/-) mice expressing systemic PLTP. To assess the specific contribution of only macrophage-derived PLTP to atherosclerosis progression, bone marrow transplantation was performed in LDLr(-/-) mice that also lacked systemic PLTP. Groups of double mutant PLTP(-/-)LDLr(-/-) mice were irradiated with 1,000 rad and injected with bone marrow (BM) cells collected from either PLTP(-/-) or wild-type mice. When fed a high-fat diet, BM cell expression of PLTP decreased plasma cholesterol of PLTP(-/-)LDLr(-/-) mice from 878 +/- 220 to 617 +/- 183 mg/dl and increased HDL cholesterol levels from 54 +/- 11 to 117 +/- 19 mg/dl. This decreased total plasma cholesterol and increased HDL cholesterol contributed to the significantly smaller atherosclerotic lesions in both aortas and heart sinus valves observed in these mice. Thus, unlike total systemic PLTP, locally produced macrophage-derived PLTP beneficially alters lipoprotein metabolism and reduces lesion progression in hyperlipidemic mice.  相似文献   

17.
The role of macrophage lipoprotein lipase (LPL) expression in atherosclerotic lesion formation was examined in low density lipoprotein receptor (LDLR(-/-)) mice using dietary conditions designed to induce either fatty streak lesions or complex atherosclerotic lesions. First, LDLR(-/-) mice chimeric for macrophage LPL expression were created by transplantation of lethally irradiated female LDLR(-/-) mice with LPL(-/-) (n = 12) or LPL(+/+) (n = 14) fetal liver cells as a source of hematopoietic cells. To induce fatty streak lesions, these mice were fed a Western diet for 8 weeks, resulting in severe hypercholesterolemia. There were no differences in plasma post-heparin LPL activity, serum lipid levels, or lipoprotein distribution between these two groups. The mean lesion area in the proximal aorta in LPL(-/-) --> LDLR(-/-) mice was significantly reduced by 33% compared with LPL(+/+) --> LDLR(-/-) mice, and a similar reduction (38%) in lesion area was found by en face analysis of the aortae. To induce complex atherosclerotic lesions, female LDLR(-/-) mice were lethally irradiated, transplanted with LPL(-/-) (n = 14), LPL(+/-) (n = 13), or LPL(+/+) (n = 14) fetal liver cells, and fed the Western diet for 19 weeks. Serum cholesterol and triglyceride levels did not differ between the three groups. After 19 weeks of diet, the lesions in the proximal aorta were complex with relatively few macrophages expressing LPL protein and mRNA in LPL(+/+) --> LDLR(-/-) mice. Analysis of cross-sections of the proximal aorta demonstrated no differences in the extent of lesion area between the groups, whereas en face analysis of the aortae revealed a dose-dependent effect of macrophage LPL on mean aortic lesion area in LPL(-/-) --> LDLR(-/-), LPL(-/+) --> LDLR(-/-), and LPL(+/+) --> LDLR(-/-) mice (1.8 +/- 0. 2%, 3.5 +/- 0.5% and 5.9 +/- 0.8%, respectively). Taken together, these data indicate that macrophage LPL expression in the artery wall promotes atherogenesis during foam cell lesion formation, but this impact may be limited to macrophage-rich lesions.  相似文献   

18.
Copper is an essential trace element in the maintenance of the cardiovascular system. Copper-deficient diets can elicit, in animals, structural and functional changes that are comparable to those observed in coronary heart disease. In this study, the effect of dietary-induced copper deficiency on aortic lesion development was measured by quantitative image analysis in C57BL/6 mice that are susceptible to diet-induced aortic lesions. The diets administered were severely copper deficient (0.2 mg/kg diet), marginally deficient (0.6 mg/kg diet), or copper adequate (6.0 mg/kg diet). Similarly, increased aortic lesion areas and elevated serum cholesterol were demonstrated in both deficient groups, compared with the copper-adequate group. Evidence for graded differences in copper status among the dietary groups was shown by the dose-response increase in liver copper concentration, copper-zinc superoxide dismutase and cytochrome-c oxidase activities, together with serum caeruloplasmin oxidase with increasing intakes of dietary copper. Despite the difference in copper status between the copper marginal and severely deficient groups, similar lesions found in both groups of mice suggest a threshold effect of copper deficiency on lesion formation.  相似文献   

19.
Ko KW  Paul A  Ma K  Li L  Chan L 《Journal of lipid research》2005,46(12):2586-2594
Endothelial lipase (EL) is a determinant of high density lipoprotein-cholesterol (HDL-C) level, which is negatively correlated with atherosclerosis susceptibility. We found no difference in aortic atherosclerotic lesion areas between 26-week-old EL+/+ apolipoprotein E-deficient (apoE-/-) and EL-/- apoE-/- mice. To more firmly establish the role of EL in atherosclerosis, we extended our study to EL-/- and EL+/+ low density lipoprotein receptor-deficient (LDLR-/-) mice that were fed a Western diet. Morphometric analysis again revealed no difference in atherosclerosis lesion area between the two groups. Compared with EL+/+ mice, we found increased HDL-C in EL-/- mice with apoE-/- or LDLR-/- background but no difference in macrophage content between lesions of EL-/- and EL+/+ mice in apoE-/- or LDLR-/- background. EL inactivation had no effect on hepatic mRNAs of proteins involved in reverse cholesterol transport. A survey of lipid homeostasis in EL+/+ and EL-/- macrophages revealed that oxidized LDL-induced ABCA1 was attenuated in EL-/- macrophages. This potentially proatherogenic change may have nullified any minor protective increase of HDL in EL-/- mice. Thus, although EL modulated lipoprotein profile in mice, there was no effect of EL inactivation on atherosclerosis development in two hyperlipidemic atherosclerosis-prone mouse models.  相似文献   

20.
Complications of atherosclerosis are the leading cause of death of patients with type 2 (insulin-resistant) diabetes. Understanding the mechanisms by which insulin resistance and hyperglycemia contribute to atherogenesis in key target tissues (liver, vessel wall, hematopoietic cells) can assist in the design of therapeutic approaches. We have shown that hyperglycemia induces FoxO1 deacetylation and that targeted knock-in of alleles encoding constitutively deacetylated FoxO1 in mice (Foxo1(KR/KR)) improves hepatic lipid metabolism and decreases macrophage inflammation, setting the stage for a potential anti-atherogenic effect of this mutation. Surprisingly, we report here that when Foxo1(KR/KR) mice are intercrossed with low density lipoprotein receptor knock-out mice (Ldlr(-/-)), they develop larger aortic root atherosclerotic lesions than Ldlr(-/-) controls despite lower plasma cholesterol and triglyceride levels. The phenotype is unaffected by transplanting bone marrow from Ldlr(-/-) mice into Foxo1(KR/KR) mice, indicating that it is independent of hematopoietic cells and suggesting that the primary lesion in Foxo1(KR/KR) mice occurs in the vessel wall. Experiments in isolated endothelial cells from Foxo1(KR/KR) mice indicate that deacetylation favors FoxO1 nuclear accumulation and exerts target gene-specific effects, resulting in higher Icam1 and Tnfα expression and increased monocyte adhesion. The data indicate that FoxO1 deacetylation can promote vascular endothelial changes conducive to atherosclerotic plaque formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号