首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. C. SENAR  J. L. COPETE  A. J. MARTIN 《Ibis》1998,140(4):661-669
Siskins Carduelis spinus show great variation in the acquisition of adult plumage, so that yearling birds can be classified as either "delayed" (i.e. still showing yearling plumage) or "advanced" (i.e. with an adult plumaged appearance). The extent of moult in males is related to the size of their black bib, which in turn is highly correlated with their social dominance rank. Autumn male body mass is higher in advanced than in delayed moult birds, but by winter the relationship is reversed, suggesting a trade-off between investment in moult and subsequent body condition. Results were similar in Spain and Britain. A possible cost of advancing moult is suggested by an analysis of aggressive interactions at bird feeding tables which showed that adult males discriminate between delayed and advanced birds, directing most aggression towards adult-looking yearling males. The results suggest that the variation in the extent of postjuvenile moult is not only related to energetic constraints but has other important behavioural and ecological implications.  相似文献   

2.
Although feathers are the unifying characteristic of all birds, our understanding of the causes, mechanisms, patterns and consequences of the feather moult process lags behind that of other major avian life‐history phenomena such as reproduction and long‐distance migration. Migration, which evolved in many species of the temperate and arctic zones, requires high energy expenditure to endure long‐distance journeys. About a third of Western‐Palearctic passerines perform long‐distance migrations of thousands of kilometres each year using various morphological, physiological, biomechanical, behavioural and life‐history adaptations. The need to include the largely non‐overlapping breeding, long‐distance migration and feather moult processes within the annual cycle imposes a substantial constraint on the time over which the moult process can take place. Here, we review four feather‐moult‐related adaptations which, likely due to time constraints, evolved among long‐distance Western‐Palearctic migrants: (i) increased moult speed; (ii) increased overlap between moult and breeding or migration; (iii) decreased extent of plumage moult; and (iv) moult of part or all of the plumage during the over‐wintering period in the tropics rather than in the breeding areas. We suggest that long‐distance migration shaped the evolution of moult strategies and increased the diversity of these strategies among migratory passerines. In contrast to this variation, all resident passerines in the Western Palearctic moult immediately after breeding by renewing the entire plumage of adults and in some species also juveniles, while in other species juvenile moult is partial. We identify important gaps in our current understanding of the moult process that should be addressed in the future. Notably, previous studies suggested that the ancestral moult strategy is a post‐breeding summer moult in the Western Palearctic breeding areas and that moult during the winter evolved due to the scheduling of long‐distance migration immediately after breeding. We offer an alternative hypothesis based on the notion of southern ancestry, proposing that the ancestral moult strategy was a complete moult during the ‘northern winter’ in the Afro‐tropical region in these species, for both adults and juveniles. An important aspect of the observed variation in moult strategies relates to their control mechanisms and we suggest that there is insufficient knowledge regarding the physiological mechanisms that are involved, and whether they are genetically fixed or shaped by environmental factors. Finally, research effort is needed on how global climate changes may influence avian annual routines by altering the scheduling of major processes such as long‐distance migration and feather moult.  相似文献   

3.
Many birds undergo seasonal changes in plumage coloration by prebreeding moult, abrasion of cryptic feather tips, or both. Seasonal dichromatism is thought to result from optimizing coloration to the conflicting demands of different life-cycle periods, sexual selection for conspicuousness being substantial during the mating season, whereas selection for camouflage and for social signals may act in all seasons. Furthermore, energetic and time demands may constrain the extent of moult, thereby limiting colour change. We investigated the relative importance of several factors in shaping this variation in a songbird clade using phylogenetic comparative methods. We found that prebreeding moult relates most strongly to breeding onset and winter diet, demonstrating that both time and food availability constrain feather replacement. Feather abrasion was best predicted by winter flocking behaviour, and secondarily by open habitats, implying that exposure to predators and the simultaneous need for social signalling may favour the expression of partially obscured ornaments in the non-breeding season. The combined occurrence of prebreeding moult and feather abrasion was associated with the polygynous mating system, suggesting that species under strong sexual selection may employ both strategies of colour change to ensure the full expression of breeding coloration.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 711–721.  相似文献   

4.
Gregorio Moreno‐Rueda 《Ibis》2014,156(2):457-460
Feather holes represent damage to the plumage of birds and are correlated with delayed moult. Uropygial gland size is negatively correlated with feather holes. Consequently, it was predicted that birds with smaller uropygial glands would have more feather holes, and that this would affect moult performance. I examined this prediction in the House Sparrow Passer domesticus. Individuals with smaller uropygial glands had more feather holes, and those with more feather holes moulted later and faster. Therefore, uropygial gland size seemed to affect moult performance via its effect on feather holes. Uropygial gland size may have a positive effect on plumage quality, through a negative effect on feather holes, and therefore on moult timing and speed.  相似文献   

5.
Moult is a costly but necessary process in avian life, which displays two main temporal patterns within the annual cycle of birds (summer and winter moult). Timing of moult can affect its duration and consequently the amount of material invested in feathers, which could have a considerable influence on feather structure and functionality. In this study, we used two complementary approaches to test whether moult duration and feather mass vary in relation to the timing of moult. Firstly, we conducted a comparative study between a sample of long‐distance migratory passerine species which differ in moult pattern. Secondly, we took advantage of the willow warbler's Phylloscopus trochilus biannual moult, for which it is well‐known that winter moult takes longer than summer moult, to assess between‐moult variation in feather mass. Our comparative analysis showed that summer moulting species performed significantly shorter moults than winter moulters. We also detected that feathers produced in winter were comparatively heavier than those produced in summer, both in between‐species comparison and between moults of the willow warbler. These results suggest the existence of a trade‐off between moult speed and feather mass mediated by timing of moult, which could contribute to explain the diversity of moult patterns in passerines.  相似文献   

6.
Alistair Dawson 《Ibis》2004,146(3):493-500
In many species of birds there is a close relationship between the end of breeding and the start of moult. Late-breeding birds therefore often start to moult late, but then moult more rapidly. This is an adaptive mechanism mediated by decreasing day lengths that allows late-breeding birds to complete moult in time. This study asked how these birds complete moult of the primary feathers more rapidly, and the consequences of this on the mass of primary feathers. Common Starlings Sturnus vulgaris were induced to moult rapidly in one of two ways. In the first experiment, one group was exposed to artificially decreasing photoperiods from the start of moult, whereas the control group remained on a constant long photoperiod. The second experiment was a more realistic simulation. Two groups were allowed to moult in an outdoor aviary. One group started to moult at the normal time. In the other, the start of moult was delayed by 3 weeks with an implant of testosterone. The duration of moult was significantly reduced in both the group experiencing artificially decreasing photoperiods and the group in which the start of moult was delayed. The faster moult rate was achieved by moulting more feathers concurrently. The rate of increase in length of each of the primary feathers, and their final length, did not differ between groups. The rate at which total new primary feather mass was accumulated was greater in more rapidly moulting birds, but this was insufficient to compensate for the greater numbers of feathers being grown concurrently. Consequently, the rate of increase in mass of individual feathers, and the final feather mass, were less in the rapidly moulting birds. A 3-week delay in the start of moult is not an unrealistic scenario. That this caused a measurable decrease in feather mass suggests that late-breeding birds are indeed likely to suffer a real decrease in the quality of plumage grown during the subsequent moult.  相似文献   

7.
Migratory birds have less time for moulting than sedentary birds, which may force them to produce their feathers faster at the expense of reducing feather quality. However, the effects of migration on the trade-off between moult speed and plumage quality remain to be studied in natural populations. We analysed the relationship between growth rate and quality of individual feathers, taking advantage of natural variation between migratory and sedentary populations of blackcaps Sylvia atricapilla . As predicted by life-history theory, individual blackcaps showed variable individual quality, which was revealed by positive correlations between feather growth rate and feather mass within populations. However, migrants grew up their feathers faster, producing lighter feathers than sedentary blackcaps. These results support the idea that feather growth rate and feather quality are traded against each other in blackcaps. Such a trade-off is apparently caused by different selection associated to migratory and sedentary life styles, which opens new insights into the diversification of moult patterns in birds.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 98–105.  相似文献   

8.
9.

Background

The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored.

Methodology/Principal Findings

We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland) and one southern population in Lund (Sweden). Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu.

Conclusions/Significance

Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations.  相似文献   

10.
Moult, comprising the growth or replacement of feathers in birds, is an energetically demanding process. As a result, in many species, the extent of the post‐juvenile moult can vary substantially. However, the reasons underlying this variation remain poorly understood, and the potential life‐history consequences of variation in moult extent are even less clear. In the present study, we aimed to use individual‐specific data to identify factors affecting the extent of the post‐juvenile moult in a population of over 2500 blue tits Cyanistes caeruleus Linnaeus 1758, and to assess the consequences of individual variation in moult extent on reproduction in the first year of life. There was a substantial sex difference in post‐juvenile moult extent, with males moulting more extensively than females. Putative immigrant birds had moulted on average less than those born locally. However, there was little evidence of carry‐over effects of the natal environment on moult extent because we found no relationship between moult extent and fledging date or nestling mass. Evidence that moult extent, and hence feather brightness, affected subsequent reproductive success was limited. Moult extent had no effect on recruitment in males, although female recruits had moulted significantly less than nonbreeders. Because it was not influenced by features of the natal environment, moult extent may not be an honest signal of individual quality in C. caeruleus. As a result, the potential consequences of variation in moult extent for fitness are likely to be small.  相似文献   

11.
D. J. Pearson 《Ibis》1984,126(1):1-15
Moult data were collected during 1967–80 from some 6900 Little Stints in the southern Kenyan rift valley.
Adults typically moulted from summer to winter body and head plumage during September and early October, soon after arrival. The complete pre-winter wing and tail moult began in most adults between mid-September and early October. Some birds finished by December, but others continued until February and March. Individual duration was usually between 100 and 150 days. Adults which completed this moult early often remoulted outer primaries between January and early April.
Young birds acquired first-winter body plumage during October and early November. Some 90% had a complete pre-winter wing and tail moult. This usually began between December and early February, and finished during March or early April, taking about 70–100 days. In about 10% of young birds, flight feather moult was restricted to the outer primaries and inner secondaries. Birds adopting this strategy typically began moult late, during January or February. Short periods of suspension were common during pre-winter wing moult, particularly in adults. The difference in moult speed between adult arid first-winter birds was attributable in the primary, secondary and tail tracts to differences in numbers of growing feathers.
Practically all birds completed a pre-summer moult involving the entire body and head plumage, most of the tertials, some or all of the tail feathers and many wing coverts. Most birds began this moult between early February and late March, and finished between mid-April and early May. It was typically later and more rapid in first-year birds than adults. In late birds, the onset of pre-summer moult was linked to the final stages of pre-winter moult.
The wing moult of the Little Stint in different wintering areas is discussed. First-winter moult strategy is compared with that in other small Calidris species.  相似文献   

12.
Many bird species show delayed plumage maturation (DPM), retaining sub-adult plumage until after their first breeding season. Most explanations assume that DPM increases fitness over the breeding season. However, unless birds undergo a full moult before breeding, DPM could also be an adaptation to increase survival over the previous winter. The winter adaptation hypothesis has never been tested owing to the difficulty of measuring overwinter survival. We experimentally tested this hypothesis in North Island robins (Petroica longipes) using a closed island population where we could accurately estimate survival. The experiment involved dyeing 41 juveniles to mimic adult males, and comparing their survival with 41 control juveniles treated with the same peroxide base minus the pigment. The population was monitored with a series of resighting surveys, and mark-recapture analysis used to estimate overwinter survival. Survival probability was estimated to be 10% for dyed birds versus 61% for control birds in 2001, and 29% for dyed birds versus 40% for control birds in the winter of 2002, supporting the winter adaptation hypothesis for DPM. Access to suitable habitat is the key factor limiting juvenile survival in this population, and the locations where dyed juveniles were sighted suggest that they were often excluded from suitable areas.  相似文献   

13.
Immunity is necessary in order to fight parasites and pathogens, but immune protection also incurs a cost for the hosts. Therefore, immunity should be traded against other fitness-related traits. Body mass, as a function of body reserves, is important in birds of temperate zones during winter. Sedentary temperate birds usually increase body mass just before winter to survive a period with low food availability and thermoregulatory requirements. Given that immunity is costly and affects body mass, a trade-off is predicted between body mass and immunity in wintering birds. Such a trade-off was tested experimentally by stimulating the immune system of a group of wintering house sparrows (Passer domesticus) from a Spanish population in an outdoor aviary with a lipopolysaccharide while another group served as control. The activation of the immune system negatively affected body mass, despite the relatively mild temperatures of the study zone. Such a trade-off between body mass and immunity was found in other similar studies during breeding, but not during moult, suggesting that the trade-off between immunity and body mass may vary seasonally.  相似文献   

14.
Patterns of feather wear in birds captured in spring have traditionally been analysed to describe the extent of winter moult in long‐distance migrants. However, the interpretation of feather wear may be rendered extremely difficult due to long moult periods, by the progress of the season, and by the existence of complex moult patterns. Here, stable isotope analysis is used to determine the origin of the wing feather generations present in Savi's warblers Locustella luscinioides captured in Portugal. Carbon, nitrogen and hydrogen isotope ratios of feathers of known European origin differed significantly from those known to have grown in Africa. A discriminant analysis, in which 91.1% of the cross validated samples were correctly classified, was used to determine the origin of tail and wing feathers collected from birds caught when they returned to the breeding quarters. The interpretation of feather‐wear generally agreed with the stable isotope analysis, but some inconsistencies were identified. The extent of winter moult in Savi's warblers is described and its moult strategy discussed.  相似文献   

15.
Patterns of feather wear in birds captured in spring have traditionally been analysed to describe the extent of winter moult in long-distance migrants. However, the interpretation of feather wear may be rendered extremely difficult due to long moult periods, by the progress of the season, and by the existence of complex moult patterns. Here, stable isotope analysis is used to determine the origin of the wing feather generations present in Savi's warblers Locustella luscinioides captured in Portugal. Carbon, nitrogen and hydrogen isotope ratios of feathers of known European origin differed significantly from those known to have grown in Africa. A discriminant analysis, in which 91.1% of the cross validated samples were correctly classified, was used to determine the origin of tail and wing feathers collected from birds caught when they returned to the breeding quarters. The interpretation of feather-wear generally agreed with the stable isotope analysis, but some inconsistencies were identified. The extent of winter moult in Savi's warblers is described and its moult strategy discussed.  相似文献   

16.
I. NEWTON  & P. ROTHERY 《Ibis》2005,147(4):667-679
Moult was studied in 1 year among Greenfinches trapped in a garden in east‐central England. Over the period June–December 2003, 333 captures of 179 individual adults provided information on breeding condition, moult, body weight, sex and age (yearling or older adult, equivalent to birds in their second or later calendar years, respectively). About 95% of all birds (sex and age groups combined) started primary feather moult from 2 July to 14 August, and finished from 10 October to 22 November. The mean date of moult onset in the population as a whole was 24 July. On average, males began 8 days before females, and yearlings began 6 days before older birds. The mean duration of moult was 100 days, whether the figure was calculated for the population as a whole or just for the 36 individual birds that were caught more than once during moult. However, moult rate was slightly slower, and moult duration slightly longer, in yearlings than in older adults of both sexes. No evidence was found for any systematic relationship between moult onset date and rate (duration). Breeding and moult overlapped by up to 5 weeks or more in individual birds, and some birds probably started to moult as early as the incubation stage of their last clutch of the season. The cloacal protuberance (taken as indicative of breeding condition) had regressed in all males by the time the fifth primary was shed, and the brood patch had regressed and re‐feathered in all females by the time the fourth primary was shed. The bulk of feather replacement in the secondary, tail and body tracts occurred in the second half of primary moult, and after cloacal protuberances and brood patches were completely regressed. In all birds examined near the end of primary moult the secondaries were still growing, and would have continued growth for up to another 19 days or more, extending the end of the moulting season into December. Body mass during moult was affected significantly by sex and age, as well as by time of day, amount of food in gullet, reproductive condition and date. No firm evidence emerged that body mass was affected by moult stage, after allowing for effects of date and other variables (although there was a non‐significant negative relationship between moult stage and body mass in males). In the population as a whole, the breeding season (from first egg‐laying to independence of last young) was spread over 21 weeks and moult over 24 weeks. With an overlap between the two events at the population level of up to 9 weeks, the two processes together took up to 36 weeks, some 69% of the year.  相似文献   

17.
The number of moults per annual cycle and their final spatial pattern (i.e. topography) show high interspecific variation in the order Passeriformes. Factors behind this variability remain obscure, especially for variability in spatial pattern among species. Here, we explored the relative influence of ten ecological, ontogenetic, social and sexual factors on the evolution of autumn moult (feather replacement largely undertaken by migratory species, which is not necessarily an independent episode within their moult cycle) and prealternate moult among Northern Hemisphere species of the family Motacillidae using phylogenetically controlled analyses, ancestral state reconstruction and analyses of correlated evolution. The results strongly support the presence of prealternate moult and absence of autumn moult as ancestral states in this family. A high rate of change between related species indicates phylogenetic independence among prealternate moult patterns and examined factors. Migration distance and gregariousness are the most important factors influencing prealternate moult evolution, and point toward natural selection and sociality as the most important evolutionary drivers of prealternate moult in Motacillidae. Breeding latitude, seasonal plumage change, winter plumage conspicuousness, sexual dichromatism, plumage maturation and extent of preformative moult show a minor influence, and suggest that ontogeny and sexual selection may have played a limited role in shaping prealternate moult in Motacillidae.  相似文献   

18.
It is often assumed that strong selection pressures give rise to trade-offs between body condition and time in long-distance migrating birds. Birds that are 'behind schedule' in fuel deposition or moult should delay departure, and this should result in a negative correlation between initial condition and departure date. We tested this hypothesis in the Great Knot Calidris tenuirostris migrating from north-west Australia to eastern Asia en route to Siberia. Great Knot gain mass and moult into breeding plumage before leaving northern Australia in late March and early April, and fly 5400–6000 km to eastern China and Korea. We radiotracked 27 individuals (17 males and ten females) to determine departure dates; 23 migrated and four remained in Australia. We characterized body condition at capture using body mass, predicted pectoral muscle mass (based on ultrasound estimates of the size of the pectoral muscles) and breeding plumage scores. Residual condition indices were uncorrelated, indicating that at the individual level, variation in one fuelling component was not strongly associated with variation in the other components. Birds that did not depart had lower residual body mass and breeding plumage indices than those that did migrate; these four birds may have been subadults. Neither sex, size nor the condition indices explained variation in departure date of migrants. Reasons for this are explored. Departure dates for northward migrating waders indicate that the migration window (span over which birds depart) decreases with proximity to the northern breeding grounds. We suggest that migration schedules become tighter as birds get nearer to the breeding grounds. Thus the lack of a relationship between condition and departure date in Great Knots may reflect the fact that the departure episode under study is the first one in sequence and is still 4–8 weeks before breeding.  相似文献   

19.
From August to December, thousands of Black‐necked Grebes Podiceps nigricollis concentrate during the flightless moult period in salt ponds in the Odiel Marshes, southern Spain, where they feed on the brine shrimp Artemia parthenogenetica. We predicted that because Black‐necked Grebes moulted in a food‐rich, predator‐free environment, there would be no net loss of body mass caused by the use of fat stored to meet energy needs during remigial feather replacement (as is the case for some other diving waterbirds). However, because the food resource disappears in winter, we predicted that grebes moulting later in the season would put on more body mass prior to moult because of the increasing risk of an Artemia population crash before the moult period is completed. Body mass determinations of thousands of birds captured during 2000–2010 showed that grebes in active wing‐moult showed greater mass with date of capture. Early‐moulting grebes were significantly lighter at all stages than late‐moulting birds. Grebes captured with new feathers post‐moult were significantly lighter than those in moult. This is the first study to support the hypothesis that individual waterbirds adopt different strategies in body mass accumulation according to timing of moult: early‐season grebes were able to acquire an excess of energy over expenditure and accumulate fat stores while moulting. Delayed moulters acquired greater fat stores in advance of moult to contribute to energy expenditure for feather replacement and retained extra stores later, most likely as a bet hedge against the increasing probability of failing food supply and higher thermoregulatory demands late in the season. An alternative hypothesis, that mass change is affected by a trophically transmitted cestode using brine shrimps as an intermediate host and Black‐necked Grebes as final host, was not supported by the data.  相似文献   

20.
In vertebrates, the endocrine system translates environmental changes into physiological responses on which natural selection can act to regulate individual fitness and, ultimately, population dynamics. Corticosterone (CORT) and dehydroepiandrosterone (DHEA) are important regulators of the avian endocrine system but relatively few studies have investigated their downstream effects on key morphological fitness‐related traits in free‐living populations. This study quantified endocrine–morphology relationships in free‐living Greenland Barnacle Geese Branta leucopsis that breed in the high Arctic. CORT and DHEA were extracted from feather and blood samples and tested for relationships with three morphological traits associated with survival and reproduction: bodyweight, body size and facial plumage coloration. We expected CORT concentration to be higher in birds with less favourable morphological traits (i.e. lighter, smaller and less attractive) and DHEA to be higher in birds with more favourable traits (i.e. heavier, bigger and more attractive). As expected, individuals with higher CORT during the post‐breeding moult (July/August) had significantly lower bodyweight during the following winter (November–April). In contrast, we found no robust DHEA–morphology relationships and no statistically significant relationship between CORT and body size or facial plumage. Overall, this study provides evidence of a negative relationship between CORT and bodyweight extending across different seasons of the annual cycle in a long‐distance migrant. This is of particular interest because bodyweight fluctuates rapidly in response to environmental resources and is closely linked to both survival and reproductive success in this species. Understanding the relationship between CORT and key morphological traits is important because endocrine‐disrupting contaminants in the Arctic increasingly interfere with CORT function in birds, including Barnacle Geese, and based on the results of this study may have consequences for bodyweight regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号