首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long J  Wang X  Gao H  Liu Z  Liu C  Miao M  Liu J 《Life sciences》2006,79(15):1466-1472
Malonaldehyde (MDA) is a product of oxidative damage to lipids, amino acids and DNA, and accumulates with aging and diseases. MDA can possibly react with amines to modify proteins to inactivity enzymes and also modify nucleosides to cause mutagenicity. Mitochondrial dysfunction is a major contributor to aging and age-associated diseases. We hypothesize that accumulated MDA due to mitochondrial dysfunction during aging targets mitochondrial enzymes to cause further mitochondrial dysfunction and contribute to aging and age-associated diseases. We investigated the effects of MDA on mitochondrial respiration and enzymes (membrane complexes I, II, III and IV, and dehydrogenases, including alpha-ketoglutaric dehydrogenase (KGDH), pyruvate dehydrogenase (PDH), malate dehydrogenase (MDH)) in isolated rat liver mitochondria. MDA showed a dose-dependent inhibition on mitochondrial NADH-linked respiratory control ratio (RCR) and ADP/O ratio declined from the concentrations of 0.2 and 0.8 micromol/mg protein, respectively, and succinate-linked mitochondrial RCR and ADP/O ratio declined from 1.6 and 0.8 micromol/mg protein. MDA also showed dose-dependent inhibition on the activity of PDH, KGDH and MDH significantly from 0.1, 0.2 and 2 micromol/mg protein, respectively. Activity of the complexes I and II was depressed by MDA at 0.8 and 1.6 micromol/mg protein. However, MDA did not affect activity of complexes III and IV in the concentration range studied (0-6.4 micromol/mg protein). These results suggest that MDA can cause mitochondrial dysfunction by inhibiting mitochondrial respiration and enzyme activity, and the sensitivity of the enzymes examined to MDA is in the order of PDH>KGDH>complexes I and II>MDH>complexes III and IV.  相似文献   

2.
3.
To evaluate the protective potential of lycopene (Lyc) and proanthocyanidins (PCs) against mercuric chloride (HgCl2)-induced hepatotoxicity, the study focused on the mechanism of oxidative stress. Firstly, the rats were subcutaneously (s.c.) injected with 0, 2.2, 4.4, and 8.8 μmol/kg HgCl2. Additionally, 40 mg/kg Lyc and 450 mg/kg PCs were given to the rats intragastrically (i.g.) before exposure to 8.8 μmol/kg HgCl2. Then, body weight, liver weight coefficient, mercury (Hg) contents, histological feature, ultrastructure, apoptosis, reactive oxygen species (ROS), glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and malondialdehyde (MDA) in the liver were measured. Lactate dehydrogenase (LDH) and alanine transaminase (ALT) in serum were determined. After exposure to different concentrations of HgCl2,it was found that Hg contents, pathological and ultrastructure injury, activities of LDH and ALT, apoptosis, and levels of ROS, GSH, and MDA increased and the activities of SOD and GSH-Px decreased in a concentration-dependent manner. Further investigation found that pretreatment with Lyc and PCs inhibited ROS production, protected antioxidant enzymes, and reversed hepatotoxicity. We concluded that Lyc and PCs had hepatoprotective effects on HgCl2-induced toxicity by antagonizing oxidative stress in rat liver.  相似文献   

4.
While increasing evidence shows that proteasome inhibition triggers oxidative damage, mitochondrial dysfunction and death in neuronal cells, the regulatory relationship among these events is unclear. Using mouse neuronal cells we show that the cytotoxicity induced by mild (0.25 μM) and potent (5.0 μM) doses of the proteasome inhibitor, N-Benzyloxycarbonyl-Ile-Glu (O-t-butyl)-Ala-leucinal, (PSI) involved a dose-dependent increase in caspase activation, overproduction of reactive oxygen species (ROS) and a mitochondrial dysfunction manifested by the translocation of the proapoptotic protein, Bax, from the cytoplasm to the mitochondria, membrane depolarization and the release of cytochrome c and the apoptosis inducing factor (AIF) from mitochondria to the cytoplasm and nucleus, respectively. Whereas caspase or Bax inhibition failed to prevent mitochondrial membrane depolarization and neuronal cell death, pretreatments with the antioxidant N-acetyl-l-cysteine (NAC) or overexpression of the antiapoptotic protein Bcl-xL abrogated these events in cells exposed to mild levels of PSI. These findings implicated ROS as a mediator of PSI-induced cytotoxicity. However, depletions in glutathione and Bcl-xL with potent proteasome inhibition exacerbated this response whereupon survival required the cooperative protection of NAC with Bcl-xL overexpression. Collectively, ROS induced by proteasome inhibition mediates a mitochondrial dysfunction in neuronal cells that culminates in death through caspase- and Bax-independent mechanisms. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The features of neuronal damage induced by the mitochondrial toxin NaN3 were investigated in rat primary cortical neuron cultures. Cell viability (MTT colorimetric determination) and transmembrane mitochondrial potential (J-C1 fluorescence) were concentration-dependently reduced 24 h after NaN3; neither nuclear fragmentation by DAPI, nor Annexin V positivity by flow cytometry were detected, ruling out the occurrence of apoptosis. The loss in cell viability (to 54 ± 2%) observed 24 h after a 10-min treatment with 3 mM NaN3 was prevented by the NMDA glutamate receptor antagonist MK801 (1 μM), by the antioxidants trolox (100 μM) and acetyl-l-carnitine (1 mM) and by the nitric oxide synthase inhibitor, L-NAME (100 μM), but not by the guanylylcyclase inhibitor ODQ, 10 μM. The mitochondrial dysfunction induced by NaN3 provides a common platform for investigating the mechanisms of both ischemic and degenerative neuronal injury, useful for screening potential protective agents against neuronal death. Rita Selvatici and Maurizio Previati equally contributed to the work.  相似文献   

6.
Anomalous choline metabolic patterns have been consistently observed in vivo using Magnetic Resonance Spectroscopy (MRS) analysis of patients with neurodegenerative diseases and tissues from cancer patient. It remains unclear; however, what signaling events may have triggered these choline metabolic aberrancies. This study investigates how changes in choline and phospholipid metabolism are regulated by distinct changes in the mitochondrial electron transport system (ETS). We used specific inhibitors to down regulate the function of individual protein complexes in the ETS of SH-SY5Y neuroblastoma cells. Interestingly, we found that dramatic elevation in the levels of phosphatidylcholine metabolites could be induced by the inhibition of individual ETS complexes, similar to in vivo observations. Such interferences produced divergent metabolic patterns, which were distinguishable via principal component analysis of the cellular metabolomes. Functional impairments in ETS components have been reported in several central nervous system (CNS) diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD); however, it remains largely unknown how the suppression of individual ETS complex function could lead to specific dysfunction in different cell types, resulting in distinct disease phenotypes. Our results suggest that the inhibition of each of the five ETS complexes might differentially regulate phospholipase activities within choline metabolic pathways in neuronal cells, which could contribute to the overall understanding of mitochondrial diseases. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
Skeletal muscle (SKM) requires a large amount of energy, which is produced mainly by mitochondria, for their daily functioning. Of the several mitochondrial complexes, it has been reported that the dysfunction of complex II is associated with several diseases, including myopathy. However, the degree to which complex II contributes to ATP production by mitochondria remains unknown. As complex II is not included in supercomplexes, which are formed to produce ATP efficiently, we hypothesized that complex II-linked respiration was lower than that of complex I. In addition, differences in the characteristics of complex I and II activity suggest that different factors might regulate their function. The isolated mitochondria from gastrocnemius muscle was used for mitochondrial respiration measurement and immunoblotting in male C57BL/6J mice. Student paired t-tests were performed to compare means between two groups. A univariate linear regression model was used to determine the correlation between mitochondrial respiration and proteins. Contrary to our hypothesis, complex II-linked respiration was not significantly less than complex I-linked respiration in SKM mitochondria (complex I vs complex II, 3402 vs 2840 pmol/[s × mg]). Complex I-linked respiration correlated with the amount of complex I incorporated in supercomplexes (r = 0.727, p < 0.05), but not with the total amount of complex I subunits. In contrast, complex II-linked respiration correlated with the total amount of complex II (r = 0.883, p < 0.05), but not with the amount of each complex II subunit. We conclude that both complex I and II play important roles in mitochondrial respiration and that the assembly of both supercomplexes and complex II is essential for the normal functioning of complex I and II in mouse SKM mitochondria.  相似文献   

9.
We have identified a group of nutrients that can directly or indirectly protect mitochondria from oxidative damage and improve mitochondrial function and named them “mitochondrial nutrients”. The direct protection includes preventing the generation of oxidants, scavenging free radicals or inhibiting oxidant reactivity, and elevating cofactors of defective mitochondrial enzymes with increased Michaelis–Menten constant to stimulate enzyme activity, and also protect enzymes from further oxidation, and the indirect protection includes repairing oxidative damage by enhancing antioxidant defense systems either through activation of phase 2 enzymes or through increase in mitochondrial biogenesis. In this review, we take α-lipoic acid (LA) as an example of mitochondrial nutrients by summarizing the protective effects and possible mechanisms of LA and its derivatives on age-associated cognitive and mitochondrial dysfunction of the brain. LA and its derivatives improve the age-associated decline of memory, improve mitochondrial structure and function, inhibit the age-associated increase of oxidative damage, elevate the levels of antioxidants, and restore the activity of key enzymes. In addition, co-administration of LA with other mitochondrial nutrients, such as acetyl-l-carnitine and coenzyme Q10, appears more effective in improving cognitive dysfunction and reducing oxidative mitochondrial dysfunction. Therefore, administrating mitochondrial nutrients, such as LA and its derivatives in combination with other mitochondrial nutrients to aged people and patients suffering from neurodegenerative diseases, may be an effective strategy for improving mitochondrial and cognitive dysfunction.  相似文献   

10.
The process of skeletal muscle aging is characterized by a progressive loss of muscle mass and functionality. The underlying mechanisms are highly complex and remain unclear. This study was designed to further investigate the consequences of aging on mitochondrial oxidative phosphorylation in rat gastrocnemius muscle, by comparing young (6 months) and aged (21 months) rats. Maximal oxidative phosphorylation capacity was clearly reduced in older rats, while mitochondrial efficiency was unaffected. Inner membrane properties were unaffected in aged rats since proton leak kinetics were identical to young rats. Application of top-down control analysis revealed a dysfunction of the phosphorylation module in older rats, responsible for a dysregulation of oxidative phosphorylation under low activities close to in vivo ATP turnover. This dysregulation is responsible for an impaired mitochondrial response toward changes in cellular ATP demand, leading to a decreased membrane potential which may in turn affect ROS production and ion homeostasis. Based on our data, we propose that modification of ANT properties with aging could partly explain these mitochondrial dysfunctions.  相似文献   

11.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder with a prevalence of 1–2% in people over the age of 50. Mitochondrial dysfunction occurred in PD patients showing a 15–30% loss of activity in complex I. Asiatic acid (AA), a triterpenoid, is an antioxidant and used for depression treatment, but the effect of AA against PD-like damage has never been reported. In the present study, we investigated the protective effects of AA against H2O2 or rotenone-induced cellular injury and mitochondrial dysfunction in SH-SY5Y cells. Mitochondrial membrane potential (MMP) and the expression of voltage-dependent anion channel (VDAC) were detected with or without AA pretreatment following cellular injury to address the possible mechanisms of AA neuroprotection. The results showed that pre-treatment of AA (0.01–100 nM) protected cells against the toxicity induced by rotenone or H2O2. In addition, MMP dissipation occurred following the exposure of rotenone, which could be prevented by AA treatment. More interestingly, pre-administration of AA inhibited the elevation of VDAC mRNA and protein levels induced by rotenone(100 nM) or H2O2 (300 μM).These data indicate that AA could protect neuronal cells against mitochondrial dysfunctional injury and suggest that AA might be developed as an agent for PD prevention or therapy. Special issue article in honor of Dr. Akitane Mori.  相似文献   

12.
Vicious cycle theories of aging and oxidative stress propose that ROS produced by the mitochondrial electron transport chain damage the mitochondria leading exponentially to more ROS production and mitochondrial damage. Although this theory is widely discussed in the field of research on aging and oxidative stress, there is little supporting data. Therefore, in order to help clarify to what extent the vicious cycle theory of aging is correct, we have exposed mitochondria in vitro to different concentrations of hydrogen peroxide or cumene-hydroperoxide (0, 30, 100 and 500 μM). We have found that 30 μM hydrogen peroxide (or higher concentrations) inhibit oxygen consumption in state 3 and increase ROS production with pyruvate/malate but not with succinate as substrate, indicating that these effects occur specifically at complex I. Similar levels of cumene-OOH inhibit state 3 respiration with both kinds of substrates, and increase ROS production in both state 4 and state 3 with pyruvate/malate and with succinate. The effects of cumene-OOH on ROS generation are due to action of the peroxide in the complex III or in the complex III plus complex I ROS generators. In all cases, the increase in ROS production occurred at a threshold level of peroxide exposure without further exponential increase in ROS generation. These results are consistent with the idea that ROS production can contribute to increase oxidative stress in old animals, but the results do not fit with a vicious cycle theory in which peroxide generation leads exponentially to more and more ROS production with age.  相似文献   

13.
Acute endotoxemia (LPS, 10 mg/kg ip, Sprague Dawley rats, 45 days old, 180 g) decreased the O2 consumption of rat heart (1 mm3 tissue cubes) by 33% (from 4.69 to 3.11 μmol O2/min. g tissue). Mitochondrial O2 consumption and complex I activity were also decreased by 27% and 29%, respectively. Impaired respiration was associated to decreased ATP synthesis (from 417 to 168 nmol/min. mg protein) and ATP content (from 5.40 to 4.18 nmol ATP/mg protein), without affecting mitochondrial membrane potential. This scenario is accompanied by an increased production of O2●− and H2O2 due to complex I inhibition. The increased NO production, as shown by 38% increased mtNOS biochemical activity and 31% increased mtNOS functional activity, is expected to fuel an increased ONOO generation that is considered relevant in terms of the biochemical mechanism. Heart mitochondrial bioenergetic dysfunction with decreased O2 uptake, ATP production and contents may indicate that preservation of mitochondrial function will prevent heart failure in endotoxemia.  相似文献   

14.
Hanit Brenner-Lavie 《BBA》2008,1777(2):173-185
Deleterious effects of dopamine (DA) involving mitochondrial dysfunction have an important role in DA-associated neuronal disorders, including schizophrenia and Parkinson's disease. DA detrimental effects have been attributed to its ability to be auto-oxidized to toxic reactive oxygen species. Since, unlike Parkinson's disease, schizophrenia does not involve neurodegenerative processes, we suggest a novel mechanism by which DA impairs mitochondrial function without affecting cell viability. DA significantly dissipated mitochondrial membrane potential (Δψm) in SH-SY5Y cells. Bypassing complex I prevented the DA-induced depolarization. Moreover, DA inhibited complex I but not complex II activity in disrupted mitochondria, suggesting complex I participation in DA-induced mitochondrial dysfunction. We further demonstrated that intact mitochondria can accumulate DA in a saturated manner, with an apparent Km = 122.1 ± 28.6 nM and Vmax = 1.41 ± 0.15 pmol/mg protein/min, thereby enabling the interaction between DA and complex I. DA accumulation was an energy and Na+-dependent process. The pharmacological profile of mitochondrial DA uptake differed from that of other characterized DA transporters. Finally, relevance to schizophrenia is demonstrated by an abnormal interaction between DA and complex I in schizophrenic patients. These results suggest a non-lethal interaction between DA and mitochondria possibly via complex I, which can better explain DA-related pathological processes observed in non-degenerative disorders, such as schizophrenia.  相似文献   

15.
The mechanism of free radical production by complex I deficiency is ill-defined, although it is of significant contemporary interest. This study studied the ROS production and antioxidant defenses in children with mitochondrial NADH dehydrogenase deficiency. ROS production has remained significantly elevated in patients compared to controls. The expression of all antioxidant enzymes significantly increased at mRNA level. However, the enzyme activities did not correlate with high mRNA or protein expression. Only the activity of superoxide dismutase (SOD) was found to correlate with higher mRNA expression in patient derived cell lines. The activities of the enzymes such as glutathione peroxidase (GPx), Catalase (CAT) and glutathione-S-transferase (GST) were significantly reduced in patients (p<0.05 or p<0.01). Glutathione reductase (GR) activity and intracellular glutathione (GSH) levels were not changed. Decreased enzyme activities could be due to post-translational or oxidative modification of ROS scavenging enzymes. The information on the status of ROS and marking the alteration of ROS scavenging enzymes in peripheral lymphocytes or lymphoblast cell lines will provide a better way to design antioxidant therapies for such disorders.  相似文献   

16.
Reactive oxygen species (ROS) are considered a key factor in mitochondrial dysfunction associated with brain aging process. Mitochondrial respiration is an important source of ROS and hence a potential contributor to brain functional changes with aging. In this study, we examined the effect of aging on cytochrome c oxidase activity and other bioenergetic processes such as oxygen consumption, membrane potential and ROS production in rat brain mitochondria. We found a significant age-dependent decline in the cytochrome c oxidase activity which was associated with parallel changes in state 3 respiration, membrane potential and with an increase in H2O2 generation. The cytochrome aa3 content was practically unchanged in mitochondria from young and aged animals. The age-dependent decline of cytochrome c oxidase activity could be restored, in situ, to the level of young animals, by exogenously added cardiolipin. In addition, exposure of brain mitochondria to peroxidized cardiolipin resulted in an inactivation of this enzyme complex. It is suggested that oxidation/depletion of cardiolipin could be responsible, at least in part, for the decline of cytochrome c oxidase and mitochondrial dysfunction in brain aging. Melatonin treatment of old animals largely prevented the age-associated alterations of mitochondrial bioenergetic parameters. These results may prove useful in elucidating the molecular mechanisms underlying mitochondrial dysfunction associated with brain aging process, and may have implications in etiopathology of age-associated neurodegenerative disorders and in the development of potential treatment strategies.  相似文献   

17.
Rotenone and pyridaben were tested on activities and properties of rat brain mitochondria determining Ki (inhibitor concentration at half maximal inhibition) and Imax (% of inhibition at maximal inhibitor concentration). The assayed activities were complexes I, II and IV, respiration in states 3, 3u (uncoupled) and 4, biochemical and functional activities of mitochondrial nitric oxide synthase (mtNOS), and inner membrane potential. Selective inhibitions of complex I activity, mitochondrial respiration and membrane potential with malate-glutamate as substrate were observed, with a Ki of 0.28–0.36 nmol inhibitor/mg of mitochondrial protein. Functional mtNOS activity was half-inhibited at 0.70–0.74 nmol inhibitor/mg protein in state 3 mitochondria and at 2.52–2.98 nmol inhibitor/mg protein in state 3u mitochondria. This fact is interpreted as an indication of mtNOS being structurally adjacent to complex I with an intermolecular mtNOS-complex I hydrophobic bonding that is stronger at high Δψ and weaker at low Δψ.  相似文献   

18.
The commonest mitochondrial diseases are probably those impairing the function of complex I of the respiratory electron transport chain. Such complex I impairment may contribute to various neurodegenerative disorders e.g. Parkinson's disease. In the following, using hepatocytes as a model cell, we have shown for the first time that the cytotoxicity caused by complex I inhibition by rotenone but not that caused by complex III inhibition by antimycin can be prevented by coenzyme Q (CoQ 1 ) or menadione. Furthermore, complex I inhibitor cytotoxicity was associated with the collapse of the mitochondrial membrane potential and reactive oxygen species (ROS) formation. ROS scavengers or inhibitors of the mitochondrial permeability transition prevented cytotoxicity. The CoQ 1 cytoprotective mechanism required CoQ 1 reduction by DT-diaphorase (NQO 1 ). Furthermore, the mitochondrial membrane potential and ATP levels were restored at low CoQ 1 concentrations (5 &#119 M). This suggests that the CoQ 1 H 2 formed by NQO 1 reduced complex III and acted as an electron bypass of the rotenone block. However cytoprotection still occurred at higher CoQ 1 concentrations (>10 &#119 M), which were less effective at restoring ATP levels but readily restored the cellular cytosolic redox potential (i.e. lactate: pyruvate ratio) and prevented ROS formation. This suggests that CoQ 1 or menadione cytoprotection also involves the NQO 1 catalysed reoxidation of NADH that accumulates as a result of complex I inhibition. The CoQ 1 H 2 formed would then also act as a ROS scavenger.  相似文献   

19.
Acute exposure to organophosphates induces a delayed neurodegenerative condition known as organophosphate-induced delayed neuropathy (OPIDN). The mechanism of OPIDN has not been fully understood as it does not involve cholinergic crisis. The present study has been designed to evaluate the role of mitochondrial dysfunctions in the development of OPIDN. OPIDN was induced in rats by administering acute dose of monocrotophos (MCP, 20 mg/kg body weight, orally) or dichlorvos (DDVP, 200 mg/kg body weight, subcutaneously), 15–20 min after treatment with antidotes [atropine (20 mg/kg body weight) and 2-PAM (100 mg/kg body weight) intraperitoneally]. MDA levels were observed to be higher and thiol content was lower in mitochondria from brain regions of OP exposed animals. This was accompanied by decreased activities of the mitochondrial enzymes; NADH dehydrogenase, succinate dehydrogenase, and cytochrome oxidase. In addition, mitochondrial functions assessed by MTT reduction also confirmed mitochondrial dysfunctions following development of OPIDN. The spatial long-term memory evaluated using elevated plus-maze test was observed to be deficit in OPIDN. The results suggest impaired mitochondrial functions as a mechanism involved in the development of organophosphate induced delayed neuropathy.  相似文献   

20.
Recent data from our laboratory have shown a regionally specific increase in lipid peroxidation in postmortem progressive supranuclear palsy (PSP) brain. To extend this finding, we measured activities of mitochondrial enzymes as well as tissue malondialdehyde (MDA) levels in postmortem superior frontal cortex (Brodmann's area 9; SFC) from 14 pathologically confirmed cases of PSP and 13 age-matched control brains. Significant decreases (-39%) in alpha-ketoglutarate dehydrogenase complex/glutamate dehydrogenase ratio and significant increases (+36%) in tissue MDA levels were observed in the SFC in PSP; no differences in complex I or complex IV activities were detected. Together, these results suggest that mitochondrial dysfunction and lipid peroxidation may underlie the frontal metabolic and functional deficits observed in PSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号