首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
35S-labelled chondroitin sulfate proteoglycans isolated from conditioned media of cultured human monocytes (day 1in vitro) and monocyte-derived macrophages (day 6in vitro) were chromatographed on columns of immobilized fibronectin and collagen, respectively. The elution profiles prior to and after alkali treatment were compared with those of standards chondroitin 4-sulfate and chondroitin sulfate E and heparin. The day 635S-proteoglycans have a higher sulfate density than the day 1 species, but this difference did not affect the elution profiles after chromatography on collagen-Sepharose, whereas the day 6 proteoglycans bound more firmly than the day 1 fraction to fibronectin-Sepharose. The elution patterns obtained for these distinct proteoglycans closely resembled those of heparin and oversulfated chondroitin sulfate E standards, and clearly demonstrated the importance of sulfate density both for the affinity to fibronectin and collagen. Neither day 1 nor day 635S-proteoglycans were found to interact with hyaluronate.Abbreviations used CSPG chondroitin sulfate proteoglycan - GAG glycosaminoglycan - CS chondroitin sulfate - CS-E chondroitin 4,6 disulfate - MDM monocyte-derived macrophages  相似文献   

2.
Recent studies have demonstrated that murine lymphocytes express specific cell-surface receptors for a range of sulfated polysaccharides. In order to determine whether polysaccharide binding induces transmembrane signaling, the effects of sulfated polysaccharides on the free intracellular calcium ion concentration [( Ca2+]i) of mouse thymocytes and spleen cells were determined. Cells were loaded with Indo-I, a fluorescent indicator of calcium ion concentration. The validity and limitations in the use of this indicator in the determination of [Ca2+]i are documented. Dextran sulfate (Mn = 500,000), iota-carrageenan, lambda-carrageenan and kappa-carrageenan all cause relatively large changes in the [Ca2+]i of thymocytes (change in [Ca2+]i greater than 50 nM). Of these, dextran sulfate (Mn = 500,000) always had the greatest effect on [Ca2+]i. Smaller responses were obtained with heparin and dextran sulfate (Mn = 5000), while no response was obtained with chondroitin 4-sulfate, chondroitin 6-sulfate, pentosan sulfate or fucoidin. This response pattern (with the exception of fucoidin and pentosan sulfate) corresponds with the expression of thymocyte receptors for these polysaccharides. The increase in [Ca2+]i caused by the sulfated polysaccharides requires extracellular Ca2+ ions however, it is unlikely that voltage-dependent ion channels are involved in these responses. In contrast to thymocytes, although spleen cells express receptors for sulfated polysaccharides, they were unresponsive to all of the sulfated polysaccharides tested, suggesting a basic difference between thymocytes and peripheral T and B lymphocytes in their response to the binding of sulfated polysaccharides.  相似文献   

3.
In our previous paper, we reported that various types of carrageenan, dextran sulfate and fucoidan, which are sulfated homopolysaccharides with high molecular weights, were human T cell mitogens and murine polyclonal B cell activators (PBAs) and that heparin, a sulfated heteropolysaccharide, was a very weak human mitogen and mouse PBA. Here we used cellulose sulfate (Mr 7-9 X 10(3], dextran sulfate with two different low molecular weights (Mr 5 X 10(3) and 8 X 10(3], two different condroitin sulfates (Mr 3.5 X 10(4], polyvinyl sulfate and polygalacturonic acid to investigate mitogenic activities of polysaccharides in detail. The following results were obtained. Low-molecular-weight sulfated homopolysaccharides, dextran sulfate and cellulose sulfate, were very weak or not human T cell mitogens. However, they were better murine PBAs. Sulfated heteropolysaccharides, chondroitin 4-sulfate and chondroitin 6-sulfate, hardly induced mitogenic changes in human T cells and mouse B cells, even though the molecular weight of these substances was more than 1 X 10(4). There were no other polymers examined so far which activated both human T cells and murine B cells. The relationship among molecular size, sulfate groups and lymphocyte activation is discussed in detail.  相似文献   

4.
Human eosinophils were purified to greater than 92% using 16-30% metrizamide gradients, and these cells cultured for up to 72 h in vitro to label sulfated glycosaminoglycans. Over 90% of the sulfated glycosaminoglycan-containing material was extracted in 4 M guanidine HCl and had a hydrodynamic size similar to a glycosaminoglycan marker with an approximate average molecular weight of 60,000. Treatment of this salt-extracted 35S-labeled glycosaminoglycan-containing material with 0.5 M NaOH resulted in a change in mass to approx. 20,000 daltons, suggesting that the larger molecules were proteoglycans with side chains with an approximate molecular weight of 20,000. These salt extracted presumptive 35S-labeled proteoglycans were protease insensitive and behaved in a highly charged fashion on DEAE-cellulose. The composition of 35S-labeled glycosaminoglycans from human eosinophils as identified using selected polysaccharides was 70-81% chondroitin 4-sulfate, 9-12% chondroitin 6-sulfate, and 5-12% dermatan sulfate. The predominance of chondroitin 4-sulfate in human eosinophils is similar to the predominance of chondroitin 4-sulfate in human neutrophils and human platelets.  相似文献   

5.
The interaction in vitro of several sulfated glycosaminoglycans with low density lipoproteins (LDL) has been studied. Chondroitin 6-sulfate and heparin were the only ones to produce turbidity when added to LDL in presence of Ca2+. However, when these two glycosaminoglycans were applied to LDL-affinity columns in presence of Ca2+, only chondroitin 6-sulfate was retained. Partially desulfated chondroitin 6-sulfate was not retained on LDL-affinity column, indicating the relevance of sulfate groups in the binding of LDL. Since chondroitin 4-sulfate and heparin, with a sulfate content respectively equal to and greater than that of chondroitin 6-sulfate, are not retained on LDL-affinity columns, the factors relevant to the binding of LDL are probably the conformation of the glycan in solution and the orientation of its sulfate groups.  相似文献   

6.
Mummery RS  Mulloy B  Rider CC 《Glycobiology》2007,17(10):1094-1103
Recombinant human betacellulin binds strongly to heparin, requiring of the order of 0.8 M NaCl for its elution from a heparin affinity matrix. This is in complete contrast to the prototypic member of its cytokine superfamily, epidermal growth factor, which fails to bind to the column at physiological pH and strength. We used a well-established heparin binding ELISA to demonstrate that fucoidan and a highly sulfated variant of heparan sulfate compete strongly for heparin binding. Low sulfated heparan sulfates and also chondroitin sulfates are weaker competitors. Moreover, although competitive activity is reduced by selective desulfation, residual binding to extensively desulfated heparin remains. Even carboxyl reduction followed by extensive desulfation does not completely remove activity. We further demonstrate that both hyaluronic acid and the E. coli capsular polysaccharide K5, both of which are unsulfated polysaccharides with unbranched chains of alternating N-acetylglucosamine linked beta(1-4) to glucuronic acid, are also capable of a limited degree of competition with heparin. Heparin protects betacellulin from proteolysis by LysC, but K5 polysaccharide does not. Betacellulin possesses a prominent cluster of basic residues, which is likely to constitute a binding site for sulfated polysaccharides, but the binding of nonsulfated polysaccharides may take place at a different site.  相似文献   

7.
Summary We previously demonstrated that human keratinocyte cultures proliferate in the absence of polypeptide growth factors (autonomous growth) and that this autonomous growth is blocked by interaction of heparin with a human keratinocyte-derived autocrine factor (KAF) which we identified as amphiregulin (AR). In the present study, we demonstrate that sulfated polysaccharides other than heparin (low and high molecular weight dextran sulfates) also inhibit the AR-mediated autonomous proliferation of human keratinocytes. Furthermore, sulfated polysaccharides such as high and low molecular weight dextran sulfates, heparan sulfate and, to a lesser extent, chondroitin sulfates B and C were also shown to be inhibitors of human keratinocyte-derived AR (k-d AR)-stimulated DNA synthesis in quiescent murine AKR-2B cell cultures. Our results demonstrate that sulfation of polysaccharides is required for AR inhibitory activity, and that several sulfated polysaccharides (other than heparin) can act as inhibitors of AR-mediated autonomous proliferation in human epidermal keratinocytes and as inhibitors of k-d AR-mediated mitogenic activity in AKR-2B cells.  相似文献   

8.
The separation of sulfated glycosaminoglycans in mixtures by agarose-gel electrophoresis and the recovery of single polysaccharide bands has been applied to the characterization of polysaccharides extracted from tissues without previous purification of single species. Sulfated glycosaminoglycans, heparin with its two components, slow-moving and fast-moving, heparan sulfate, dermatan sulfate, and chondroitin sulfate, were separated to microgram level by conventional agarose-gel electrophoresis. After their separation, they were fixed in the agarose-gel matrix by precipitation in a cetyltrimethylammonium bromide solution, making them visible on a dark background. After recovery of gel containing the fixed bands, high temperatures (90 degrees C for 15 min) were necessary to dissolve the gel matrix, and a solution of NaCl (3 M) was used to release sulfated polysaccharides from the complex with cetyltrimethylammonium. After precipitation of glycosaminoglycans in the presence of ethanol, the recovery of slow-moving heparin, fast-moving heparin, heparan sulfate, dermatan sulfate, and chondroitin sulfate was from 1 to 10 microg, with a percentage greater than 45% and a purity above 90%. Sulfated glycosaminoglycans in mixtures recovered from gel matrix as single species were evaluated for purity and characterized for unsaturated disaccharides after treatment with bacterial lyases (heparinases for heparin and heparan sulfate samples, and chondroitinases for dermatan sulfate and chondroitin sulfate) and molecular mass. Bovine lung and heart Glycosaminoglycans were extracted and separated into single species by agarose-gel electrophoresis and recovered from gel matrix after treatment in cetyltrimethylammonium solution. Unsaturated disaccharides pattern, the sulfate to carboxyl ratio, and the molecular mass of each single polysaccharide species were determined.  相似文献   

9.
Cartilage chondroitin sulfate isolated directly from rat rib or from in vitro culture of rat rib constitutes a population of glycosaminoglycans which is heterogeneous with respect to size, degree of sulfation and content of N-acetylgalactosamine 4-sulfate. Fractions elute from Dowex-1 in order of increasing molecular size and degree of sulfation up to a certain limit. Unsulfated disaccharides and disulfated disaccharides are present in both the undersulfated chondroitin sulfate fractions and in the average or more representative chondroitin sulfate. A small content of disaccharide 6-sulfate is present in all fractions and appears to be an integral part of the chondroitin 4-sulfate molecules. Rat gastric chondrosulfatase hydrolyzes sulfate preferentially from the larger chondroitin 4-sulfate molecules, and the sulfate is removed primarily from the disaccharide 4-sulfate units.  相似文献   

10.
Lymphocyte receptors for sulfated polysaccharides were detected in two ways, namely, by the ability of lymphocytes to form rosettes with sheep red blood cells (SRBC) coupled with one of fourteen different sulfated polysaccharides, and by the ability of cholate extracts of lymphocytes to hemagglutinate the same sulfated polysaccharide-coupled SRBC. It was found that murine lymphocytes lacked receptors for a number of glycosaminoglycans, such as hyaluronic acid, chondroitin-4-sulfate, chondroitin-6-sulfate, and dermatan sulfate, but reacted strongly with heparin, arteparon, and a number of sulfated polysaccharides of plant and bacterial origin. In each case receptor activity was demonstrated by rosetting and by the ability of lymphocyte lysates to strongly agglutinate sulfated polysaccharide-coupled SRBC. The receptors exhibited a high degree of diversity as evidenced by (a) only subpopulations of lymphocytes, particularly splenic B cells, expressing receptors for some of the sulfated polysaccharides and (b) hemagglutination-inhibition analyses revealing numerous subsets of receptors with different binding specificities. Receptor diversity was further highlighted by a 48% difference in the hemagglutination-inhibiton results between thymus and spleen. It is proposed that these receptors are involved in cell-cell communication and lymphocyte homing and recirculation. The likely target structures for the receptors in vivo are the heparan sulfates, a ubiquitous and structurally diverse family of sulfated glycosaminoglycans.  相似文献   

11.
Summary Keratinocytes and melanocytes, which together form units of structure and function within human epidermis, are known to differ in expression of autocrine growth factors, particularly those with heparin binding affinity. Because such cytokines could be regulated by the endogenous heparinlike glycosaminoglycan, heparan sulfate, proteoglycan synthesis was compared between human keratinocytes and melanocytes cultured from a common donor. Following steady-state isotopic labeling under conditions of active growth (low density cultures) and growth inhibition (high density cultures), the sulfated polymers were isolated from conditioned media and cell extracts. We found that keratinocytes produced substantially more sulfated glycosaminoglycans than did the melanocytes. There was no evidence for hyaluronic acid synthesis by the melanocytes. The majority of [35S]-sulfate labeling was in the heparan sulfates of the keratinocytes and in the chondroitin sulfates of the melanocytes. During the transition from active growth to growth inhibition, there was increased heparan sulfate proteoglycan and free chain synthesis by keratinocytes but not by melanocytes, and chondroitin sulfate proteoglycan production declined in both cell lineages. The differences may reflect divergent evolution as each cell type came to exploit those complex polysaccharides in different ways to regulate molecular pathways of growth and differentiation. The coupling of growth inhibition with augmented synthesis of heparan sulfates observed for the keratinocytes suggests a regulatory role in growth factor signaling in that cell type.  相似文献   

12.
Collagen-fibronectin complexes, formed by binding of fibronectin to gelatin or collagen insolubilized on Sepharose, were found to bind 20–40% of radioactivity in [35S]heparin. Fibronectin attached directly to Sepharose also bound [35S]heparin, while gelatin-Sepharose without fibronectin did not. Unlabeled heparin and highly sulfated heparan sulfate efficiently inhibited the binding of [35S]heparin, hyaluronic acid and dermatan sulfate were slightly inhibitory, while chondroitin sulfates and heparan sulfate with a low sulfate content did not inhibit.The interaction of heparin with fibronectin bound to gelatin resulted in complexes which required higher concentrations of urea to dissociate than complexes of fibronectin and gelatin alone. Heparin as well as highly sulfated heparan sulfate and hyaluronic acid brought about agglutination of plastic beads coated with gelatin when fibronectin was present. Neither fibronectin nor glycosaminoglycans alone agglutinated the beads.It is proposed that the multiple interactions of fibronectin, collagen and glycosaminoglycans revealed in these assays could play a role in the deposition of these substances as an insoluble extracellular matrix. Alterations of the quality or quantity of any one of these components could have important effects on cell surface interactions, including the lack of cell surface fibronectin in malignant cells.  相似文献   

13.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

14.
The body wall of the sea cucumber contains high amounts of sulfated glycans, which differ in structure from glycosaminoglycans of animal tissues and also from the fucose-rich sulfated polysaccharides isolated from marine algae and from the jelly coat of sea urchin eggs. In Ludwigothurea grisea, glycans can be separated into three fractions which differ in molecular mass and chemical composition. The fraction containing a high-molecular-mass component has a high proportion of fucose and small amounts of amino sugars, whereas another fraction contains primarily a sulfated fucan. The third fraction, which represents the major portion of the sea cucumber polysaccharides, contains besides fucose, approximately equimolar proportions of glucuronic acid and amino sugars, and has a sulfate content higher than that in the other two fractions. Both D and L-isomers of fucose are found in these polysaccharides, and the sulfate is linked to the O-3 position of the fucose residues. The attachment position of the sulfate groups to the glucuronic acid units and amino sugars is still undetermined. It is possible that these compounds are involved in maintaining the integrity of the sea cucumber's body wall, in analogy with the role of other macromolecules in the vertebrate connective tissue.  相似文献   

15.
Uterine slices obtained from the estrogen-treated rabbits were digested with pronase. Glycosaminoglycans and acidic glycopeptides were then isolated by Dowex 1 column chromatography and preparative electrophoresis on cellulose acetate membrane (Separax), in succession. Each subfraction thus obtained was identified by the mobility on Separax electrophoresis and the digestibility with mucopolysaccharidases (Streptomyces hyaluronidase, testicular hyaluronidase, chondroitinase AC, chondroitinase ABC and heparinase). The resulting data showed that each complex saccharide (hyaluronic acid, heparan sulfate, chondroitin sulfate A, chondroitin sulfate C, dermatan sulfate, sulfated glycopeptide and sialoglycopeptide) was separated into 2-5 fractions, indicating charge and/or molecular heterogeneity of each complex saccharide.  相似文献   

16.
A difference in the expression and metabolism of sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. Cells from the primary tumor continued to accumulate glycosaminoglycans in their medium over a 72-h period, while the accumulation of sulfated glycosaminoglycans in the medium of metastases-derived cells showed a plateau after 18-24 h. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Chondroitin sulfates, dermatan sulfate, heparan sulfate, heparin, keratan sulfate, and oligosaccharides derived from these sulfated glycosaminoglycans have been used for the measurement of sulfatase activity of rat skin extracts. Chromatographic fractionation of the extracts followed by specificity studies demonstrated the existence of five different sulfatases, specific for 1) the nonreducing N-acetylglucosamine 6-sulfate end groups of heparin sulfate and keratan sulfate, 2) the nonreducing N-acetylgalactosamine (or galactose) 6-sulfate end groups of chondroitin sulfate (or keratan sulfate), 3) the nonreducing N-acetylgalactosamine 4-sulfate end groups of chondroitin sulfate and dermatan sulfate, 4) certain suitably located glucosamine N-sulfate groups of heparin and heparan sulfate, or 5) certain suitably located iduronate sulfate groups of heparan sulfate and dermatan sulfate. Two arylsulfatases, one of which was identical in its chromatographic behaviors with the third enzyme described above, were also demonstrated in the extracts. These results taken together with those previously obtained from studies on human fibroblast cultures suggest that normal skin fibroblasts contain at least five specific sulfatases and diminished activity of any one may result in a specific storage disease.  相似文献   

18.
Heparin augments osteoclast resorption-stimulating activity in serum   总被引:1,自引:0,他引:1  
Increased numbers of mast cells are commonly seen at sites of increased bone resorption and in osteoporosis. Long-term administration of heparin, a major component of mast cell granules, causes osteoporosis. We therefore tested the effect of heparin on bone resorption by osteoclasts disaggregated from neonatal rat long bones. We found that, in the absence of serum, heparin was without effect on osteoclast function. However, in the presence of newborn calf serum, rat serum, or bovine platelet-poor plasma-derived serum, heparin, in the range 25-100 micrograms/ml, induced an increase in osteoclastic bone resorption. Heparin appeared to act through binding and enhancement of an osteoclast resorption-stimulating activity (ORSA) present in serum. A number of known factors that show an affinity for heparin, including transforming growth factor-beta, platelet-derived growth factors, insulin-like growth factors I or II, acidic or basic fibroblast growth factors, fibronectin, or laminin, could not substitute for ORSA, suggesting that the activity may represent a novel heparin-binding factor. The ability of glycosaminoglycans (GAGs) and related molecules to enhance resorption was dependent on the degree of sulfation and on their size: The high molecular weight GAG heparan sulfate and polysaccharides fucoidan or dextran sulfate showed a similar effect, while low molecular weight heparin, chondroitin-2-sulfate, chondroitin-4-sulfate, and chondroitin-6-sulfate were without effect. We propose that mast cells or heparin therapy increases bone resorption through augmentation of the activity of a factor involved in the local and systemic regulation of osteoclastic bone resorption.  相似文献   

19.
We investigated the mechanisms of anticoagulant activity mediated by sulfated galactans. The anticoagulant activity of sulfated polysaccharides is achieved mainly through potentiation of plasma cofactors, which are the natural inhibitors of coagulation proteases. Our results indicated the following. 1) Structural requirements for the interaction of sulfated galactans with coagulation inhibitors and their target proteases are not merely a consequence of their charge density. 2) The structural basis of this interaction is complex because it involves naturally heterogeneous polysaccharides but depends on the distribution of sulfate groups and on monosaccharide composition. 3) Sulfated galactans require significantly longer chains than heparin to achieve anticoagulant activity. 4) Possibly, it is the bulk structure of the sulfated galactan, and not a specific minor component as in heparin, that determines its interaction with antithrombin. 5) Sulfated galactans of approximately 15 to approximately 45 kDa bind to antithrombin but are unable to link the plasma inhibitor and thrombin. This last effect requires a molecular size above 45 kDa. 6) Sulfated galactan and heparin bind to different sites on antithrombin. 7) Sulfated galactans are less effective than heparin at promoting antithrombin conformational activation. Overall, these observations indicate that a different mechanism predominates over the conformational activation of antithrombin in ensuring the antithrombin-mediated anticoagulant activity of the sulfated galactans. Possibly, sulfated galactan connects antithrombin and thrombin, holding the protease in an inactive form. The conformational activation of antithrombin and the consequent formation of a covalent complex with thrombin appear to be less important for the anticoagulant activity of sulfated galactan than for heparin. Our results demonstrate that the paradigm of heparin-antithrombin interaction cannot be extended to other sulfated polysaccharides. Each type of polysaccharide may form a particular complex with the plasma inhibitor and the target protease.  相似文献   

20.
Eight different sulfated polysaccharides were isolated from Chlorophyta. All exhibited thrombin inhibition through a heparin cofactor II (HCII)-dependent pathway, and their effects on the inhibition of thrombin were more potent than those of heparin or dermatan sulfate. In particular, remarkably potent thrombin inhibition was found for the sulfated polysaccharides isolated from the Codiales. In the presence of these sulfated polysaccharides, both the recombinant HCII (rHCII) variants Lys(173)-->Leu and Arg(189)-->His, which are defective in interactions with heparin and dermatan sulfate, respectively, inhibited thrombin in a manner similar to native rHCII. This result indicates that the binding site of HCII for each of these eight sulfated polysaccharides is different from the heparin- or dermatan sulfate-binding site. All the sulfated polysaccharides but RS-2 significantly stimulated the inhibition of thrombin by an N-terminal deletion mutant of HCII (rHCII-Delta74). Furthermore, hirudin(54-65) decreased only 2-5-fold the rate of thrombin inhibition by HCII stimulated by the sulfated polysaccharides, while HD22, a single-stranded DNA aptamer that binds exosite II of thrombin, produced an approximately 10-fold reduction in this rate. These results suggest that, unlike heparin and dermatan sulfate, the sulfated polysaccharides isolated from Chlorophyta activate HCII primarily by an allosteric mechanism different from displacement and template mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号