首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The feto-acinar pancreatic protein or FAPP, the oncofetal glycoisoform of bile salt-dependent lipase (BSDL), is characterized by the presence of the J28 glycotope recognized by mAbJ28. This fucosylated epitope is carried out by the O-linked glycans of the C-terminal mucin-like region of BSDL. This glycotope is expressed by human tumoral pancreatic tissues and by human pancreatic tumoral cell lines such as SOJ-6 and BxPC-3 cells. However, it is not expressed by the normal human pancreatic tissues and by MiaPaCa-2 and Panc-1 cells. Due to the presence of many putative sites for O-glycosylation on FAPP and BSDL, the structure of the J28 glycotope cannot be attained by classical physical methods. In the first part of the present study, we have determined which glycosyltransferases were differently expressed in pancreatic tumoral cell lines compared to normal tissues, focusing in part on fucosyltransferases (Fuc-T) and core-2 beta6-N-acetylglucosaminyltransferase (Core2GlcNAc-T). Our data suggested that alpha2-Fuc-T activity was decreased in the four cell lines tested (SOJ-6, BxPC-3, MiaPaCa-2, and Panc-1). The alpha(1-3) and alpha(1-4) fucosylations were decreased in tumor cells that do not express the J28 glycotope whereas alpha4-Fuc-T and Core2GlcNAc-T activities were significantly increased in SOJ-6 cells which best expressed the J28 glycotope. Therefore, we wished to gain information about glycosyltransferases involved in the building of this structure by transfecting the cDNA encoding the mucin-like region of BSDL in CHO-K1 also expressing Core2GlcNAc-T and/or FUT3 and/or FUT7 activities. These CHO-K1 cells have been previously transfected with the cDNA encoding Core2GlcNAc-T and/or FUT3 and/or FUT7. Data indicated that the C-terminal peptide of BSDL (Cter) produced by those cells did not carry out the J28 glycotope unless Core2GlcNAc-T activity is present. Further transfection with FUT3 cDNA, increased the antibody recognition. Nevertheless, transfection with FUT3 or FUT7 alone did not generate the formation of the J28 glycotope on the C-terminal peptide. Furthermore, the Cter peptide produced by CHO-K1 cells expressing Core2GlcNAc-T was more reactive to the mAbJ28 after in vitro fucosylation with the recombinant soluble form of FUT3. These data suggested that the J28 glycotope encompasses structures initiated by Core2GlcNAc-T and further fucosylated by alpha3/4-Fuc-T such as FUT3, likely on GlcNAc residues.  相似文献   

2.
We have recently shown that the pancreatic bile salt-dependent lipase (BSDL) can be taken up by intestinal cells and transported to the blood circulation. This mechanism likely involves (specific) receptor(s) able to bind BSDL and located at the apical intestinal cell membrane. In this study, using Int407 human intestinal cells cultured to form a tight epithelium, we attempted to characterize (the) BSDL receptor(s). We found that an apical 50-kDa protein was able to bind BSDL. Further, we have demonstrated that Int407 cells expressed the lectin-like oxidized-LDL receptor (LOX-1), the upregulation of which by oxidized-LDL potentiates the transcytosis of BSDL, whereas carrageenan and to a lesser extent polyinosinic acid and fucoidan decrease the enzyme transcytosis. The mAb JTX92, which blocks the LOX-1 receptor function, also impaired the BSDL transcytosis. To confirm these results, the cDNA encoding the human intestinal receptor LOX-1 has been cloned, inserted into vectors, and transfected into Int407 cells. Overexpression of LOX-1 by these cells leads to a substantial increase in the BSDL transcytosis. Globally, these data support the view that LOX-1 could be an intestinal receptor for BSDL, which is implicated in the transcytosis of this enzyme throughout Int407 cells.  相似文献   

3.
M Wu  G K Arimura  A A Yunis 《Biochemistry》1977,16(9):1908-1913
A plasminogen activator secreted by cultured human pancreatic carcinoma (Mia PaCa-2) cells has been purified to apparent homogeneity by procedures including Sepharose-L-arginine methyl ester affinity chromatography, Sephadex G-200 gel filtration, isoelectric focusing, and sodium dodecyl sulfate gel electrophoresis. The plasminogen activator shares many properties with urokinase including: molecular weight (55 000), isoelectric point (8.7), heat stability (60 degrees C, 30 min), PH stability (1.5-10), and its mode of activation of plasminogen. The intracellular enzyme is membrane bound and can be solubilized by detergent. Solubilized activator has a molecular weight similar to that of the secreted enzyme as determined by sodium dodecyl sulfate gel electrophoresis. The production of plasminogen activator by Mia PaCa-2 cells is totally inhibited by actinomycin D and cycloheximide.  相似文献   

4.
5.
Structure similarity searches using a combinatorial extension approach revealed that a protein fold structurally related to the sphingolipid binding domain (SBD) of HIV-1 gp120 (V3 loop) is present on pancreatic bile salt-dependent lipase (BSDL). A synthetic peptide derived from the predicted V3-like domain of BSDL interacted with reconstituted monolayers of sphingolipids such as GalCer and GlcCer. Using Chinese hamster ovary cells stably transfected with the cDNA encoding the rat BSDL (CHO-3B clone) or pancreatic SOJ-6 cells expressing the human BSDL as models, we showed that the enzyme cofractionates with caveolin-1. The secretion of BSDL by CHO-3B cells was inhibited by permeable drugs affecting rafts structure (D609, PDMP, and filipin). Data suggest that the functional interaction between the BSDL SBD and lipid rafts is physiologically relevant and could be essential for sensing the BSDL folding prior to secretion. A tentative model accounting for the phosphorylation-induced dissociation of BSDL from rafts is presented.  相似文献   

6.
Cloning and characterization of human pancreatic lipase cDNA   总被引:6,自引:0,他引:6  
Pancreatic lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) hydrolyzes dietary long chain triacylglycerol to free fatty acids and monoacylglycerols in the intestinal lumen. In the presence of bile acids, the activity of lipase is stimulated by colipase. As a prelude to studying the relationship of the protein structures to the functional properties of lipase and colipase, a cDNA encoding human pancreatic lipase was isolated from a lambda gt11 cDNA library screened with a rabbit polyclonal anti-human pancreatic lipase antibody. The full length cDNA clone of 1477 base pairs contained an open reading frame encoding a 465-amino acid protein, including a 16-amino acid signal peptide. The nucleotide sequence was 69% identical to the dog pancreatic lipase cDNA. The predicted NH2-terminal protein sequence agreed with the published NH2-terminal sequence of human pancreatic lipase and the predicted protein sequence was 85 and 70% identical to the protein sequences of pig and dog pancreatic lipase, respectively. A region of homology around Ser-153 is conserved in a number of lipid-binding proteins. Human hepatic lipase and lipoprotein lipase share extensive homology with pancreatic lipase, suggesting that the three proteins are members of a small gene family. In vitro translation of mRNA transcribed from the cDNA resulted in a protein of the expected molecular size that could be processed by microsomal membranes to yield a glycolated protein with proper signal peptide cleavage. RNA blot analysis demonstrated tissue specificity for pancreatic lipase. Thus, for the first time, a full length human pancreatic lipase cDNA has been isolated and characterized. The demonstrated regions of homology with other lipases will aid definition of interactions with substrate and colipase through site-specific mutagenesis.  相似文献   

7.
8.
We have isolated a cDNA clone for an interferon-induced 15-kDa protein. The cDNA clone was prepared from mRNA isolated from interferon-beta-treated human Daudi cells. The clone of 635 base pairs contains an open reading frame coding for a protein of 145 amino acids, and suggests for the mRNA a 75-base pair 5' untranslated and a 125-base pair 3' untranslated region. Approximately 85% of the amino acid sequence of the 15-kDa protein has been independently obtained from 2 nmol of material using microsequencing technology on the N terminus of the intact protein and on tryptic and chymotryptic peptides. The amino acid sequence of the isolated protein is identical to the amino acid sequence deduced from the cDNA. Northern blot analysis confirmed that the mRNA for the 15-kDa protein is undetectable in untreated cells, but is greatly induced following interferon treatment.  相似文献   

9.
10.
A complex of nucleic acid binding proteins (100, 35, and 25 kDa) was purified to apparent homogeneity from nuclear extracts of the murine plasmacytoma J558L. Amino-terminal sequence analysis of the 25-kDa subunit enabled the isolation of a cDNA that encodes a 528-amino acid protein that is highly homologous to the human 62-kDa human polypyrimidine tract binding protein (PTB) (Garcia-Blanco, M. A., Jamison, S. F., and Sharp, P. A. (1989) Genes & Dev. 3, 1874-1886; Gil, A., Sharp, P. A., Jamison, S. F., and Garcia-Blanco, M. A. (1991) Genes & Dev. 5, 1224-1236; Patton, J. G., Mayer, S. A., Tempst, P., and Nadal-Ginard, B. (1991) Genes & Dev. 5, 1237-1251). Sequence comparison programs suggested the presence of domains related to the RNA recognition motif found in other RNA-binding proteins, and deletion analysis revealed that the carboxyl-terminal 195 amino acids of the recombinant PTB was sufficient for specific binding to pre-mRNAs. Cross-linking experiments identified a 25-kDa protein in crude nuclear extracts of J558L cells that possessed the RNA binding properties of PTB, while a approximately 60-kDa protein is detected in other murine cell lines tested. Thus, the 25-kDa protein found in J558L is likely a proteolytic product of the murine polypyrimidine tract binding protein. A probe derived from the PTB cDNA detected a ubiquitous 3.3-kb mRNA in murine cell lines and a 3.6-kb mRNA in human lines. Southern blot analysis revealed three strongly hybridizing DNA fragments and several more weakly hybridizing bands in mouse, human, and yeast DNA. The role of PTB in pre-mRNA splicing is discussed.  相似文献   

11.
12.
Heat shock proteins (Hsps) are ubiquitous molecular chaperones with indispensable roles in assisting protein folding and giving protection from proteotoxic environmental harm. Members of the 70-kDa heat shock protein family have been demonstrated to recognize and bind with distinguished RNA sequences, which function as determinants of eukaryotic mRNA stability. We have earlier identified the molecular domains involved in RNA-binding and characterized in detail the specificity, affinity and some regulatory aspects of this molecular interaction using various deletion mutants and homologues of Hsp70. We have shown that wild type, but not any of the tested truncated mutants of Hsp70, is efficiently taken up by P388 mouse macrophage cells. Here we addressed the question of whether Hsp70 is capable of delivering bound RNA into mammalian cells. Employing fluorescence and confocal microscopy, we demonstrated that full length Hsp70 facilitates the uptake of RNA molecules into the cytoplasm of mammalian cells. We propose that further optimization of this system might enable the development of a valuable tool to deliver RNA molecules, such as siRNA, dsRNA or other regulatory RNA sequences to probe or influence various regulatory processes in eukaryotic cells.  相似文献   

13.
Yang  Gang  Wang  Huanyu  Feng  Mengyu  You  Lei  Zheng  Lianfang  Zhang  Taiping  Cong  Lin  Zhao  Yupei 《中国科学:生命科学英文版》2019,62(6):791-806
Pancreatic cancer is one of the most lethal human malignancies, partly because of its propensity for metastasis. However, highly metastatic human pancreatic cancer cell lines suitable for studies of metastasis are currently lacking. Here we established two highly metastatic human pancreatic cancer cell lines, MIA PaCa-2 In8 and Panc-1 In8, by Matrigel induction assay. The cell lines were further characterized both in vitro and in vivo. MIA PaCa-2 In8 and Panc-1 In8 cells demonstrated increased migration and invasion compared with their respective parental cells. Following injection into nude mice, MIA PaCa-2 In8 and Panc-1 In8 cells resulted in more pulmonary metastases compared with the parental cells. Furthermore, analyses of m RNA, long non-coding RNA, micro RNA, and methylation profiling revealed that these factors were aberrantly regulated in the highly metastatic cells,indicating that they probably affected metastasis. We thus established and characterized two highly metastatic human pancreatic cell lines that could be used as valuable tools for future investigations into the pathogenesis, metastasis, and potential treatment of human pancreatic cancer.  相似文献   

14.
The C-to-U editing of apolipoprotein B (apo-B) mRNA is catalyzed by a multiprotein complex that recognizes an 11-nucleotide mooring sequence downstream of the editing site. The catalytic subunit of the editing enzyme, apobec-1, has cytidine deaminase activity but requires additional unidentified proteins to edit apo-B mRNA. We purified a 65-kDa protein that functionally complements apobec-1 and obtained peptide sequence information which was used in molecular cloning experiments. The apobec-1 complementation factor (ACF) cDNA encodes a novel 64.3-kDa protein that contains three nonidentical RNA recognition motifs. ACF and apobec-1 comprise the minimal protein requirements for apo-B mRNA editing in vitro. By UV cross-linking and immunoprecipitation, we show that ACF binds to apo-B mRNA in vitro and in vivo. Cross-linking of ACF is not competed by RNAs with mutations in the mooring sequence. Coimmunoprecipitation experiments identified an ACF-apobec-1 complex in transfected cells. Immunodepletion of ACF from rat liver extracts abolished editing activity. The immunoprecipitated complexes contained a functional holoenzyme. Our results support a model of the editing enzyme in which ACF binds to the mooring sequence in apo-B mRNA and docks apobec-1 to deaminate its target cytidine. The fact that ACF is widely expressed in human tissues that lack apobec-1 and apo-B mRNA suggests that ACF may be involved in other RNA editing or RNA processing events.  相似文献   

15.
In this paper, we report, for the first time, the localization of the phosphorylation site of the fetoacinar pancreatic protein (FAPP), which is an oncofetal variant of the pancreatic bile salt-dependent lipase. Using Chinese hamster ovary (CHO) cells transfected with the cDNA encoding FAPP, we radiolabeled the enzyme with (32)P, and then the protein was purified by affinity chromatography on cholate-immobilized Sepharose column and submitted to a CNBr hydrolysis. Analysis of peptides by high pressure liquid chromatography, associated with the radioactivity profile, revealed that the phosphorylation site is located at threonine 340. Site-specific mutagenesis experiments, in which the threonine was replaced by an alanine residue, were used to invalidate the phosphorylation of FAPP and to study the influence of the modification on the activity and secretion of the enzyme. These studies showed that CHO cells, transfected with the mutated cDNA of FAPP, kept all of their ability to synthesize the protein, but the loss of the phosphorylation motif prevented the release of the protein in the extracellular compartment. However, the mutated enzyme, which was sequestrated in the transfected CHO cells, remains active on bile salt-dependent lipase substrates.  相似文献   

16.
17.
18.
Li JH  Ma QY  Shen SG  Hu HT 《Cell biology international》2008,32(12):1530-1535
Stimulation of mice dorsal root ganglion neurons (DRGNs) activity by human pancreatic cancer (PanCa) cell line Mia PaCa-2 and its potential molecule mechanism has been investaged. DRGNs were cultured alone or along with the MIA PaCa-2. The effects of MIA PaCa-2 to DRGNs were determined by neurofilament (NF) immunocytochemical and Nissl staining. ELISA was used to detect the concentration of insulin-like growth factor-1 (IGF-1) in the culture supernatant. Cyton size, neurite outgrowth and neuronal activity in the experimental group were greater than in the control groups. However, the concentration of IGF-1 in the supernatants was not significantly different from those in the blank and non-cultured medium groups. In the presence of MIA PaCa-2 cell line, cyton size, neurite outgrowth and neuronal activity were enhanced, which may provide more routes for the invasion of cancer cells along nerves.  相似文献   

19.
The Ku (p70/p80) autoantigen is a DNA-protein complex recognized by sera from certain patients with SLE and related diseases. Although human autoantibodies react with at least eight different epitopes of the human Ku complex, they had little reactivity with rodent Ku Ag on immunoblots. Small amounts of 70- and 80-kDa proteins were immunoprecipitated from murine cell extracts, however, suggesting that the Ku particle is not unique to human cells. This was confirmed by isolating cDNA clones encoding murine Ku Ag by plaque hybridization with a human p70 cDNA probe. The murine p70 cDNA clones had a deduced amino acid sequence 82.9% identical to that of human p70, and comparable amounts of murine and human p70 mRNA were detected in 3T3 and K562 cells, respectively. The poor reactivity of human autoantibodies with murine p70 was attributable to specific amino acid substitutions in an immunodominant conformational epitope located on amino acids 560-609 of human p70. Several amino acids critical for antigenicity of this region were defined by mutagenesis studies. Other conformational epitopes of Ku were also antigenically poorly conserved among species. Species-specific epitopes recognized by lupus autoantibodies are unusual but not unique to Ku. In general, poorly conserved autoepitopes have been conformational, rather than sequential, suggesting that the antigenicity of conformational epitopes may be particularly sensitive to evolutionary change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号