首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
DNA浓度与其Raman光谱强度间的线性相关的分析   总被引:2,自引:0,他引:2  
Raman光谱法业已广泛应用于生物医学,生物化学和分子生物学等很多领域,尤其是近年来傅立叶转换Raman光谱技术(FT—Ramanspectroscopy)的兴起,引起人们极大兴趣。本文介绍Raman光谱技术应用的一个新领域一对溶液中DNA浓度的测定。溶液中DNA浓度的测定,是生物化学和生物医学上经常遇到的问题,通常采用紫外分光光度法。当要分析DNA构型变化时,最常用的方法是X线晶体衍射,核磁共振和Raman光谱法。为了进一步研究DNA构型变化与浓度变化之间的关系,进行了DNA的Raman光谱强度与浓度间的线性相关研究。以HPK1A细胞DNA的810cm-1Raman光谱峰作为线性相关分析的内标,实验结果表明该DNA的Ra-man光谱强度与浓度间存在着良好的线性相关(R=0.993)。其检出限为0.10μg/μl,标准差(SD)为0.003(n=11),相对标准差(RSD)为2.73%。应用FT—Raman光谱术测定溶液中DNA浓度,方法简单,样品不需特殊处理,灵敏和准确。本文详细讨论了该法的操作步骤和注意事项。  相似文献   

2.
嘧啶核苷磷酸化酶(PyNPase)是嘧啶核苷补救代谢途径中的关键酶,广泛分布于微生物及动物组织细胞中。近几年来,很多学者对PyNPase在抗癌药物合成和癌症治疗方面的作用及其临床应用进行了广泛的研究。本文综述了PyNPase与肿瘤患者临床病理特征、抗癌药物评价等之间的关系。  相似文献   

3.
王明  陈雷  王朴 《生命的化学》2013,(6):633-637
设计肿瘤靶向性抗癌药物一直是研究热点。因为CD44在许多肿瘤细胞表面过表达,所以基于CD44与其配体透明质酸(hyaluronic acid,HA)的相互作用设计肿瘤靶向药物成为一个新的研究方向。本文介绍了CD44的基本结构7LCD44与HA之间的相互作用,并对以CD44为靶点的靶向抗癌药物研究进展进行了简介。  相似文献   

4.
受体酪氨酸激酶c-Met即肝细胞生长因子HGF受体。HGF/c-Met信号通路在肿瘤形成、生长和转移过程中被频繁激活,因此, c-Met 已成为抗癌药物研究中一个重要靶标。重点介绍近年来基于c-Met通路的抗癌药物研究进展。  相似文献   

5.
癌症已经严重威胁人类的健康。从自然界中筛选更新的、更有效的抗癌药物已成为了该领域的研究重点。作为新型抗癌药物的潜在来源,众多从植物内生真菌分离的代谢产物被证明具有抗肿瘤的生物活性。这些内生真菌通常具有特殊的代谢途径,可以在其培养物中积累抗癌活性物质,如紫杉烷类、生物碱类、细胞松弛素、鬼臼毒素、布雷菲德菌素A等。将系统的介绍已分离自植物内生真菌的抗癌药物的研究进展,同时对内生真菌的抗癌药物筛选的策略和发展前景进行简要的展望。  相似文献   

6.
生物完整性指数与水生态系统健康评价   总被引:19,自引:2,他引:17  
生物完整性指数是目前水生态系统健康评价中应用最广泛的一个生态指标。本文扼要介绍了生物完整性指数的概念、水生态系统健康评价的原理以及大型底栖无脊椎动物完整性指数的构建方法,介绍了生物完整性指数在水生态系统健康评价中的应用及我国开展这方面工作的建议。  相似文献   

7.
肿瘤联合治疗是临床癌症治疗的常用手段,指通过应用两种或两种以上的药物发挥协同作用从而提高抗癌效果。脂质体是一种药物载体,近年来被广泛用于多种抗癌药物的共递送。本文中,笔者主要介绍脂质体的发展以及脂质体共载体系用于癌症联合治疗的研究进展。  相似文献   

8.
该文从多靶点作用的激酶抑制剂、高度选择性的激酶抑制剂等方面介绍激酶抑制剂在抗肿瘤药物中的应用。目前,虽然分子靶抗癌药物治疗机制仍有不确定性,特别是针对多基因产物的分子靶抗癌药物更是如此,但这种新型的药物仍为人类攻克癌症开辟了广阔的前景。  相似文献   

9.
双硫仑作为一种治疗慢性酒精中毒的药物在临床中广泛使用。近几十年研究发现它除了戒酒作用还在治疗癌症中具有巨大潜力,针对它在体外和体内模型的研究结论已有部分在临床治疗中得到证实。双硫仑通过其代谢产物抑制乙醛脱氢酶活性导致体内乙醛含量积累,增加细胞毒性从而抑制肿瘤干细胞增殖分化;提高细胞内活性氧的浓度诱导细胞凋亡;抑制蛋白酶体活性,积累大量废弃蛋白质诱导细胞凋亡;通过抑制NF-κB下调来抑制上皮间质转化等。此外双硫仑与抗癌药物联合使用可提升抗癌药物药效。由于具有低毒、低成本且对肿瘤组织有趋向性等特点,双硫仑重新应用于临床作为抗癌药物具有广阔前景。简要回顾了双硫仑最新研究中阐明的双硫仑抗癌作用分子机制,展望了未来双硫仑用作新临床抗癌药物的前景,以期为双硫仑在抗癌药物中的应用研究提供参考。  相似文献   

10.
癌症,是现今威胁人类健康的一大杀手,目前常规的治疗手段之一是予以大剂量的化疗药物进行治疗。但大多数抗癌药物因具有广泛而强烈的细胞毒性,在杀伤癌细胞的同时也无选择性的杀伤了正常人体细胞,使得患者在接受治疗的同时承受了较大的痛苦,降低了癌症患者的生存质量。因而在药剂学研究中,须以提高药效、增强靶向性及降低毒副作用等为目标,合理地选择和开发抗癌药物给药系统。自脂质体作为新型药物传递技术引入癌症治疗以来,因其独特的理化性质和递药机理,高效低毒地递送抗癌药物至病灶,因而成为现今抗癌药物给药系统研究中的热点。本文结合国内外的相关资料和最新报道,综述了脂质体抗癌药物的递药优势、研究进展与存在的问题,并在分析了产业化现状的基础上,对这一新型给药系统在抗癌药物递送领域中的发展做一展望。  相似文献   

11.
Arp Z  Autrey D  Laane J  Overman SA  Thomas GJ 《Biochemistry》2001,40(8):2522-2529
p-Cresol is a simple molecular model for the para phenolic side chain of tyrosine. Previously, Siamwiza and co-workers [(1975) Biochemistry 14, 4870-4876] investigated p-cresol solutions to identify Raman spectroscopic signatures for different hydrogen-bonding states of the tyrosine phenoxyl group in proteins. They found that the phenolic moiety exhibits an intense Raman doublet in the spectral interval 820-860 cm(-1) and that the doublet intensity ratio (I2/I1, where I2 and I1 are Raman peak intensities of the higher- and lower-wavenumber members of the doublet) is diagnostic of specific donor and acceptor roles of the phenoxyl OH group. The range of the doublet intensity ratio in proteins (0.30 < I2/I1 < 2.5) was shown to be governed by Fermi coupling between the phenolic ring-stretching fundamental nu1 and the first overtone of the phenolic ring-deformation mode nu(16a), such that when the tyrosine phenoxyl proton is a strong hydrogen-bond donor, I2/I1 = 0.30, and when the tyrosine phenoxyl oxygen is a strong hydrogen-bond acceptor, I2/I1 = 2.5. Here, we interpret the Raman and infrared spectra of p-cresol vapor and extend the previous correlation to the non-hydrogen-bonded state of the tyrosine phenoxyl group. In the absence of hydrogen bonding, the Raman intensity of the higher-wavenumber component of the canonical Fermi doublet is greatly enhanced such that I2/I1 = 6.7. Thus, for the non-hydrogen-bonded phenoxyl, the lower-wavenumber member of the Fermi doublet loses most of its Raman intensity. This finding provides a basis for understanding the anomalous Raman singlet signature (approximately 854 cm(-1)) observed for tyrosine in coat protein subunits of filamentous viruses Ff and Pf1 [Overman, S. A., et al. (1994) Biochemistry 33, 1037-1042; Wen, Z. Q., et al. (1999) Biochemistry 38, 3148-3156]. The implications of the present results for Raman analysis of tyrosine hydrogen-bonding states in other proteins are considered.  相似文献   

12.
The doublet at 850 and 830 cm-1 in the Raman spectra of proteins containing tyrosyl residues has been examined as to its origin and the relation of its components to the environment of the phenyl ring, the state of the phenolic hydroxyl group, and the conformation of the amino acid backbone. Raman spectral studies on numerous model molecules related to tyrosine, including certain deuterium derivatives, show that the doublet is due to Fermi resonance between the ring-breathing vibration and the overtone of an out-of-plane ring-bending vibration of the para-substituted benzenes. Further examination of the effects of pH and solvents on the Fermi doublet and of the crystallographic data demonstrates that the intensity ratio of the two components depends on changes in the relative frequencies of the two vibrations. These in turn are found to be sensitive to the nature of the hydrogen bonding of the phenolic hydroxyl group of its ionization, but much less so to the environment of the phenyl ring and the conformation of the amino acid backbone. By use of the relative intensities of the doublet in model systems where the phenolic hydroxyl group is strongly hydrogen-bonded, weakly hydrogen-bonded, free or ionized, the reported Raman intensities of the doublets observed in the Raman spectra of several proteins have been interpreted. The results are compared with those obtained by other techniques.  相似文献   

13.
Raman spectra have been measured for intact rat lens nuclei at various stages of aging in an attempt to gain further insight into age-related structural changes in the lens proteins, especially changes concerning protein sulfhydryl groups. Two Raman bands at 2579 and 2561 cm-1 were observed to be assignable to SH stretching modes of the cysteine residues. These bands have been attributed to "exposed" and "buried" sulfhydryl groups of the lens proteins, respectively, on the basis of a model compound study. The relative intensities of both SH stretching modes decreased with lens aging, and concurrently the intensity of a S-S stretching mode at 509 cm-1 due to disulfide bridges increased, suggesting that not only exposed but also buried protein sulfhydryl groups are converted to disulfide groups as a result of aging. The rate of the intensity decrease in the 2561 cm-1 band was similar to that in the 2579 cm-1 band. Therefore, it seems likely that the sulfhydryl groups in the two distinct environments are nearly equally subjected to the oxidation. Cysteine and cystine residues of the lens proteins gave their C-S stretching modes at 708 cm-1, indicating that they predominantly assume PC and/or PN conformers. The intensity ratio of a tyrosine doublet near 840 cm-1 (I832/I855) changed from approximately 0.86 to approximately 0.81 with the aging of the rat lens. This result implies that some tyrosine residues undergo a change in their hydrogen bonding environments during the course of aging. Of particular importance is that the relative intensity change of the tyrosine doublet with normal aging and that with cataract formation are in opposite directions.  相似文献   

14.
G E Arnold  L A Day  A K Dunker 《Biochemistry》1992,31(34):7948-7956
The circular dichroism (CD) spectrum of fd bacteriophage has a deep minimum at 222 nm characteristic of highly alpha-helical protein, but there is a shoulder at 208 nm rather than a minimum, with a 222/208-nm amplitude ratio near 1.5 rather than near 1. Oxidation of fd phage with the tryptophan reagent N-bromosuccinimide (NBS) changes the ratio. In this report, the NBS titration of fd is followed by CD and three other spectroscopies, the results of which yield an explanation of the unusual CD spectrum. Absorbance, fluorescence, and Raman data show the oxidation to have two phases, the first of which involves the destruction of tryptophan and the second, tryptophan and tyrosine. Raman spectra reveal the invariance of an environmentally-sensitive tyrosine Fermi resonance doublet during the first oxidative phase. Raman spectra also show that little or no change of alpha-helicity occurs in the first or second oxidation phase, although very slight changes in the helix parameters might be occurring. Concurrent with the destruction of tryptophan during the first phase is the appearance in CD difference spectra ([theta]NBS-treated fd - [theta]native fd) of positive maxima at 208-210 nm and negative maxima at 224 nm, with crossovers at 217 nm. Enormous difference ellipticities, per oxidized subunit of 50 amino acids, of +490,000 +/- 80,000 deg cm2 dmol-1 at 208 nm and -520,000 +/- 110,000 deg cm2 dmol-1 at 224 nm have been derived from the data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
G Y Liu  C A Grygon  T G Spiro 《Biochemistry》1989,28(12):5046-5050
Ultraviolet resonance Raman spectra are reported for cytochrome c (cyt c) in FeII and FeIII oxidation states at low (0.005 M) and high (0.9-1.5 M) ionic strength. With 200-nm excitation the amide band intensities are shown to remain constant, establishing that redox state and ionic strength have no influence on the alpha-helical content. The tyrosine 830/850-cm-1 doublet, however, shows a loss in 830-cm-1 intensity at I = 0.005 M for the FeIII protein, suggesting a weakening or a loss of H-bonding from an internal tyrosine, probably Tyr-48, which is H-bonded to a heme propionate group in cyt c crystals. Excitation profiles of tryptophan peak at approximately 229 nm for both FeII and FeIII forms of cyt c, but at approximately 218 nm for aqueous tryptophan. The approximately 2200-cm-1 red shift of the resonant electronic transition is attributed to the Trp-59 residue being buried and H-bonded. Consistent with this Trp environment, the H-bond-sensitive 877-cm-1 Trp band is strong and sharp, and the 1357/1341-cm-1 doublet has a large intensity ratio, approximately 1.5, for both FeII and FeIII cyt c. The 877-cm-1-band frequency shifts to 860 cm-1 when the Trp indole proton is replaced by a deuteron. This band was used to show that Trp H/D exchange in D2O is much faster for FeIII than FeII cyt c. The half-time for exchange at room temperature is estimated to be approximately 30 and approximately 5 h, respectively, for FeII and FeIII when examined at I = 0.005.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Toxin gamma is a basic, low-molecular-weight, neurotoxic protein, isolated from the venom of the Brazilian scorpion, Tityus serrulatus. Raman spectra (400-1800 cm-1 region) of this toxin in both the lyophilized state and in 0.1 M acetate buffer (pH 4.5) and the infrared spectrum (700-4000 cm-1 region) of a solid film were investigated. From the vibrational spectra, it can be concluded that the polypeptide backbone of toxin gamma consists of a mixture of the different secondary structures, with predominance of beta-sheet, followed by unordered structure and alpha-helix, with some evidence of beta-turn structures. The four disulfide bridges assume the gauche-gauche-gauche conformation of the CCSSCC fragments. The intensity ratio of the doublet at 853 and 828 cm-1 suggests that four out of the five tyrosine residues are exposed. The three tryptophan residues are exposed on the surface, and the single methionine residue assume the gauche-gauche conformation. Toxin gamma retains full activity in the pH 4.5-7.5 range, but is almost completely inactivated at pH 11.5.  相似文献   

17.
Thomas GJ 《Biopolymers》2002,67(4-5):214-225
Protein structure and stability are sensitive to and dependent on the local interactions of amino acid side chains. A diverse and important type of side-chain interaction is the hydrogen bond. Although numerous hydrogen bonds are resolved in protein 3-dimensional structures, those of the cysteine sulfhydryl group (S-H) are elusive to high-resolution X-ray and NMR methods. However, the nature and strength of sulfhydryl hydrogen bonds (S-H* * *X) are amenable to investigation by Raman spectroscopy. The power of the Raman method for characterizing S-H* * *X interactions is illustrated by resolving the Raman S-H stretching band for each of the eight cysteines per 666-residue subunit in the trimeric tailspike of icosahedral bacteriophage P22. The Raman sulfhydryl signatures of the wild-type tailspike and eight single-site cysteine to serine mutants reveal a heretofore unrecognized diversity of S-H hydrogen bonds in a native protein. The use of Raman spectroscopy to identify the non-hydrogen-bonded state of the tyrosine phenoxyl group is also described. This unusual and unexpected state occurs for all tyrosines in the assembled capsids of filamentous viruses Ff and Pf1. The Raman spectral signature of the non-hydrogen-bonded tyrosine phenoxyl, which is characterized by an extraordinary Raman Fermi doublet intensity ratio (I850/I830 = 6.7), extends and refines the existing correlation for hydrogen-bonded tyrosines. Finally, a novel Raman signature for tryptophan in the Pf3 filamentous virus is identified, which is proposed as diagnostic of "cation-pi interaction" involving the guanidinium group of Arg 37 as a cation donor and the indolyl ring of Trp 38 as a pi-electron acceptor. These studies demonstrate the power of Raman spectroscopy for investigating the interactions of key side chains in native protein assemblies.  相似文献   

18.
Laser Raman spectroscopy has been used to study calcium binding to calmodulin, Ca2+-dependent regulator protein. Cation binding accompanied by spectral changes of tyrosine residues in the regions of Fermi-resonance doublet and 1600-1620 cm-1, of some carboxylate-containing residues, amide I, III and C-C(N) skeletal vibrations. Amide III contour analysis and calculations of Amide I contours show that complexation causes peptide backbone conformational changes characterized mainly by increased alpha-helical content.  相似文献   

19.
Ultraviolet resonance Raman spectra with 229-nm excitation are reported for aqueous tyrosine and for ovomucoid third domain proteins from chicken [OMCHI3(-)] and from chachalaca [OMCHA(-)], as well as alpha 1-, alpha 2-, and beta-purothionin. At this excitation wavelength interference from phenylalanine is minimized, and it is possible to determine the frequencies of the Tyr ring modes nu 8a and nu 8b. The nu 8b frequency decreases with the degree of Tyr H-bond donation, reaching a limiting value for deprotonated tyrosine. This spectroscopic indicator of H-bond strength was calibrated by using the model compound p-cresol in H-bond acceptor solutions for which the enthalpy of H-bond formation can be obtained from the literature. With this calibration it is possible to estimate Tyr H-bond enthalpies in proteins for which Tyr is a H-bond donor; values of 13.7, 9.6, and 11.2 kcal/mol were found for OMCHA3(-) and for alpha 1- (or alpha 2-) and beta-purothionin, respectively. The intensity of the 1176-cm-1 nu 9a band of Tyr excited at 229 nm and also the intensity ratio of the Tyr 830/850-cm-1 Fermi doublet excited at 200 nm both correlate strongly with the estimated H-bond enthalpies, but large deviations are seen for the purothionins, reflecting a special environment for the Tyr residue of these proteins, which is believed to be constrained in a hydrophobic pocket. The molar intensity of the strong approximately 1000-cm-1 nu 12 band of phenylalanine in aqueous solution is about half the value observed in most proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
R P Rava  T G Spiro 《Biochemistry》1985,24(8):1861-1865
Ultraviolet resonance Raman (RR) spectra, with 200- and 218-nm excitation from a H2-shifted quadrupled Nd:YAG laser, are reported for insulin and alpha-lactalbumin in dilute aqueous solution, at pH values known to produce differences in the exposure of the aromatic residues to solvent. At 200 nm, the spectra are dominated by tyrosine bands, whose intensity is lowered somewhat in protein conformations in which tyrosine is exposed to solvent. The expected shift in the relative intensities of the components of the approximately 850-cm-1 tyrosine doublet is difficult to discern because the higher energy component shows much greater resonance enhancement and the lower energy component appears as a weak shoulder. The peptide vibrations, amides I, II, and III, are also enhanced at 200 nm. The infrared active amide II mode is particularly prominent, although it is not observed in Raman spectra with visible excitation. In addition, the amide I band is quite broad in the 200-nm RR spectra, and the peak frequency is lower than that seen in visible excitation Raman spectra and is close to the infrared frequency. It appears that 200-nm excitation produces resonance enhancement of the infrared-active components of both amide I and amide II. Excitation at 218 nm enhances tryptophan modes strongly. The 876-cm-1 band, assigned to a deformation mode of the five-membered ring, shows a measurable upshift upon exposure of tryptophan to solvent, attributable to N-H hydrogen bonding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号