首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
采用高保真PCR方法调出CTB基因,经测序证实核酸序列正确后,再亚克隆到含植物表达调控原件的载体上,采用冻融法和电击法,将含CTB的植物表达载体转入根癌农杆菌中,通过一系列分子克隆的方法获得含CTB基因的植物及元素达载体pBI-CTB和pBI-CTBK,并经酶切证实,为下一步的植物转基因研究打下坚实的基础。  相似文献   

2.
郝岗平  边高鹏  孙凌云  张媛英   《广西植物》2007,27(1):132-136
采用高保真PCR方法从pGEM-VP1-T质粒扩出VP1基因,定向克隆到含DHA的融合中间载体pUC18-DHA,得到pUC18-VP1-DHA,经测序证实核酸序列正确后,再亚克隆到转化范围广,转化效率高,且含有双增强子的高效植物双元表达载体pGreen0029-GFP上,获得含VP1融合DHA基因的植物双元表达载体pGreen0029-VP1-DHA,采用电击法将含VP1的植物表达载体转入根癌农杆菌G3101中,获得了含VP1基因的双元植物表达载体,为下一步的广范围转基因植物表达研究奠定了基础。  相似文献   

3.
禽流感抗原基因NA,HA的克隆及其表达载体的构建   总被引:1,自引:0,他引:1  
HA和NA是禽流感病毒重要的保护性抗原基因,为了得到禽流感植物疫苗,本试验采用高保真PCR扩增方法得到目的基因,分别克隆到pMD18-T载体.经测序证实核酸序列正确后,克隆到含有GUS基因的高效植物双元表达载体pB1121上,获得含有HA/NA基因的植物双元表达载体pB1121-HA和pB1121-NA,采用冻融法将含HA/NA基因的植物双元表达载体转入根癌农杆菌LBA4404,菌液浸染生菜子叶,共培48小时后进行GUS基因表达检测,x-glue染色显蓝色,说明带有HA/NA的植物双元表达载体构建成功,为下一步的生菜转HA/NA基因研究奠定基础.  相似文献   

4.
CBF4基因植物表达双元载体的构建   总被引:1,自引:0,他引:1  
目的:对拟南芥CBF4基因序列进行克隆.方法:用限制性内切酶将CBF4基因从pMD18-T CBF4载体上切下,定向连接到含超强启动子的pC2301-35S-OCS表达载体上,成功构建了CBF4基因植物表达载体pC2301-35S-OCS-CBF4.利用冻融法将此表达载体导入只含辅助质粒的根癌农杆菌中,提取转化质粒,经PCR扩增和酶切验证鉴定表明.结果:CBF4基因植物表达双元载体构建成功.结论:转CBF4基因烟草的抗寒性比野生型烟草要高.  相似文献   

5.
雪莲PBP基因表达载体的构建   总被引:6,自引:2,他引:4  
目的:利用新疆雪莲特殊功能基因磷脂酰乙醇胺结合蛋白基因(XLPBP)与基础质粒构建植物表达载体pXLPBP,为介导该基因在植物中表达,以期提高植物抗寒力的转基因研究打下基础。方法:利用设计好的两端加有EcoRⅠ酶切位点的引物,对XLPBP全长基因片段进行PCR扩增,获得700bp左右大小的片段,将其纯化回收并与同样经过EcoRⅠ酶切的质粒pCAMBIA3301连接;然后采用冻融法和电击法,将含XLPBP基因的载体pCAMBIA3301转入根癌农杆菌中。结果:通过一系列分子克隆方法获得含雪莲XLPBP基因的植物表达载体,并经PCR实验证实。结论:利用以自身携带的非编码区为调控序列的XLPBP全长基因和双向表达载体pCAMBIA3301为基础构建植物表达载体,可望提高外源基因表达量。  相似文献   

6.
以植物双元表达载体pCAMBIA2300为基础,设计分别带有酶切位点XbaI和PstI的一对引物,从克隆载体pGM-T-MwLEA3中扩增到目的基因MwLEA3。用XbaI和PstI双酶切该目的基因及表达载体pCAMBIA2300,回收后利用T4DNA连接酶连接,获得植物表达载体pCAM-MwLEA3。通过冻融法将所获得的植物表达载体重组质粒导入根癌农杆菌LBA4404菌株中,为该基因的功能鉴定及通过农杆菌介导法将MwLEA3基因导入植物提高相关抗性奠定了基础。  相似文献   

7.
[目的]克隆大鼠神经营养因子BDNF基因,构建植物表达载体,在豌豆植物中表达BDNF蛋白。[方法]采用RT-PCR法克隆大鼠脑源性神经营养因子BDNF基因,构建豌豆植物表达载体p CAPE2-BDNF,利用豌豆发芽种子真空侵染法在豌豆植物中瞬时表达BDNF蛋白,以His标签抗体进行Western Blot检测目的蛋白。[结果]获得含有鼠源性神经营养因子BDNF基因的植物表达载体p CAPE2-BDNF,His标签抗体检测到目的条带。[结论]BDNF蛋白在豌豆植物中成功表达,有助于进一步对其功能活性进行分析。  相似文献   

8.
将一个398bp的植物化的猪α乳清蛋白基因(Lactalbumin,LA)编码区克隆到带有花椰菜花叶病毒的35S启动子的质粒中。对它们进行PCR检测和序列分析,证实这些阳性克隆是实验预期的重组质粒。随即将35S启动子-α-乳清蛋白基因-终止子这一表达单元克隆到双元载体pCG-CB中,用该重组质粒双元载体pCG-CB-Lact转化农杆菌V3101后,以农杆菌法进行拟兰芥植物转化,用除草剂Finale对转化植物进行抗除草剂基因筛选,得到一些抗除草剂的转化植株。对这些抗除草剂植株进行猪α乳清蛋白基因PCR分析,成功筛选到带有猪α乳清蛋白基因并且可以在后代稳定遗传的转基因植物。Western blot蛋白质表达分析,表明猪α乳清蛋白在拟兰芥中成功表达,并且猪仅乳清蛋白被正确加工成天然蛋白。  相似文献   

9.
伪狂犬病毒gD基因在转基因烟草中的表达   总被引:6,自引:0,他引:6  
将猪伪狂犬病毒 (pseudorabiesvirus ,PRV)最主要的保护性抗原基因gD完整编码区亚克隆到修饰的植物双元表达载体pBI 35SL中 ,使其置于强启动子CaMV 35S doubleenhancer TEV 5′UTR下游 ,构建的转基因植物双元表达质粒经农杆菌介导转化烟草 .PCR检测叶片筛选阳性植株 ,Southern杂交进一步证实gD已整合到转基因烟草基因组中 .固相酶联斑点试验和Western印迹表明 ,gD在烟草获得正确表达并具有抗原性  相似文献   

10.
将克隆于羽衣甘蓝的胁迫应答基因BoRS1连入中间载体p35S-2300::gus::noster相应位点,成功地构建了含BoRS1基因的植物双元表达载体p35S-2300::BoRS1::noster,并通过农杆菌介导法对烟草进行了遗传转化。PCR检测结果表明目的基因BoRS1已成功地导入并整合到烟草基因组中。RT-PCR分析显示,在不同的转基因烟草植株中BoRS1表达量存在差异。转BoRS1烟草的耐干性和甘露醇胁迫研究表明,BoRS1基因的表达对提高植物抗干旱胁迫能力有一定的作用。  相似文献   

11.
Expression of cholera toxin B subunit oligomers in transgenic potato plants   总被引:36,自引:0,他引:36  
A gene encoding the cholera toxin B subunit protein (CTB), fused to an endoplasmic reticulum (ER) retention signal (SEKDEL) was inserted adjacent to the bi-directional mannopine synthase P2 promoter in a plant expression vector containing a bacterial luciferase AB fusion gene (luxF) linked to the P1 promoter. Potato leaf explants were transformed by Agrobacterium tumefaciens carrying the vector and kanamycin-resistant plants were regenerated. The CTB-SEKDEL fusion gene was identified in the genomic DNA of bioluminescent plants by polymerase chain reaction amplification. Immunoblot analysis indicated that plant-derived CTB protein was antigenically indistinguishable from bacterial CTB protein, and that oligomeric CTB molecules (Mr 50 kDa) were the dominant molecular species isolated from transgenic potato leaf and tuber tissues. Similar to bacterial CTB, plant-synthesized CTB dissociated into monomers (Mr 15 kDa) during heat or acid treatment. The maximum amount of CTB protein detected in auxin-induced transgenic potato leaf and tuber tissues was approximately 0.3% of total soluble plant protein. Enzyme-linked immunosorbent assay methods indicated that plant-synthesized CTB protein bound specifically to GM1-ganglioside, the natural membrane receptor of cholera toxin. In the presence of the SEKDEL signal, CTB protein accumulates in potato tissues and is assembled into an oligomeric form that retains native biochemical and immunological properties. The expression of oligomeric CTB protein with immunological and biochemical properties identical to native CTB protein in edible plants opens the way for preparation of inexpensive food plant-based oral vaccines for protection against cholera and other pathogens in endemic areas throughout the world  相似文献   

12.
《The Journal of cell biology》1989,109(6):2633-2640
The sequence Ser-Glu-Lys-Asp-Glu-Leu (SEKDEL) has been shown to be a signal which leads to retention of at least two proteins in the endoplasmic reticulum of animal cells (Munro and Pelham, 1987). In this study we tested the function of this signal by appending it to two secretory proteins, rat growth hormone and the alpha subunit of human chorionic gonadotrophin (hCG-alpha). We used oligonucleotide-directed mutagenesis and expression to generate proteins with SEKDEL added to the exact COOH termini and then carried out a detailed analysis of their transport in monkey COS cells. We found that transport was not blocked for either protein, but rather that the half-time for secretion was increased about sixfold for both proteins. Analysis of oligosaccharide processing on hCG-alpha-SEKDEL and indirect immunofluorescence microscopy on cells expressing both proteins was consistent with a retardation of transport between the endoplasmic reticulum and the Golgi apparatus. A change in the last amino acid of the SEKDEL sequence from Leu to Val abolished the retardation almost completely, suggesting a highly specific interaction of the sequence with a receptor. A change in the first amino acid had little or no effect on retardation. We conclude that the SEKDEL signal can have strong effects on reducing the rate of protein exit from the endoplasmic reticulum without generating absolute retention. Presumably other features of protein structure must be important to generate absolute retention.  相似文献   

13.
Processes associated with late events of N-glycosylation within the plant Golgi complex are a major limitation to the use of plant-based systems to produce recombinant pharmaceutical proteins for parenteral administration. Specifically, sugars added to the N-glycans of a recombinant protein during glycan maturation to complex forms (e.g. β1,2 xylose and α1,3 fucose) can render the product immunogenic. In order to avoid these sugars, the human enzyme α-L-iduronidase (IDUA, EC 3.2.1.76), with a C-terminal ER-retention sequence SEKDEL, was expressed in seeds of complex-glycan-deficient (cgl) mutant and wild-type (Col-0) Arabidopsis thaliana, under the control of regulatory (5'-, signal-peptide-encoding-, and 3'-) sequences from the arcelin 5-I gene of Phaseolus vulgaris (cgl-IDUA-SEKDEL and Col-IDUA-SEKDEL, respectively). The SEKDEL motif had no adverse effect on the specific activity of the purified enzyme. Surprisingly, the majority of the N-glycans of Col-IDUA-SEKDEL were complex N-glycans (i.e. contained xylose and/or fucose) (88 %), whereas complex N-glycans comprised a much lower proportion of the N-glycans of cgl-IDUA-SEKDEL (26 %), in which high-mannose forms were predominant. In contrast to the non-chimeric IDUA of cgl seeds, which is mainly secreted into the extracellular spaces, the addition of the SEKDEL sequence to human recombinant IDUA expressed in the same background led to retention of the protein in ER-derived vesicles/compartments and its partial localization in protein storage vacuoles. Our data support the contention that the use of a C-terminal ER retention motif as an effective strategy to prevent or reduce complex N-glycan formation, is protein specific.  相似文献   

14.
An effective dengue vaccine should elicit immune responses against all four different dengue virus serotypes. This study optimized the codon usage of a gene encoding consensus dengue virus envelope protein domain III (cEDIII) with cross-neutralizing activity against four dengue virus serotypes for plant expression. Then, a plant expression vector was constructed with this gene under the control of the rice amylase 3D promoter (RAmy3D), which is a strong inducible promoter under sugar starvation conditions. The synthetic cEDIII gene was fused with the RAmy3D signal peptide and ER retention signal, SEKDEL, and was introduced into rice callus by particle bombardment-mediated transformation. The integration and expression of cEDIII gene in transgenic rice callus was confirmed by genomic DNA PCR amplification, Northern blot analysis, and western blot analysis, respectively. Densitometric analysis determined that the highest expression level of the cEDIII protein in lyophilized rice callus was approximately 0.45 mg g−1. These results suggest that it is feasible to use transgenic rice callus to produce the consensus dengue virus envelop protein domain III for edible vaccine purposes.  相似文献   

15.
A gene encoding the B subunit of the enterotoxigenic Escherichia coli heat-labile enterotoxin (LTB) was adapted to the optimized plant coding sequence, and fused to the endoplasmic reticulum retention signal SEKDEL in order to enhance its expression level and protein assembly in plants. The synthetic LTB (sLTB) gene was placed into a plant expression vector under the control of the CaMV 35S promoter, and subsequently introduced into the watercress (Nasturtium officinale L.) plant by the Agrobacterium-mediated transformation method. The integration of the sLTB gene into the genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification. The assembly of plant-produced LTB protein was detected by western blot analysis. The highest amount of LTB protein produced in transgenic watercress leaf tissue was approximately 1.3% of the total soluble plant protein. GM1-ganglioside enzyme-linked immunosorbent assay indicated that plant-synthesized LTB protein bound specifically to GM1-ganglioside, which is the receptor for biologically active LTB on the cell surface, suggesting that the plant-synthesized LTB subunits formed biologically active pentamers.  相似文献   

16.
17.
A cDNA fragment encoding human lactoferrin (hLF) linked to a plant microsomal retention signal peptide (SEKDEL) was stably integrated into the Solanum tuberosum genome by Agrobacterium tumefaciens-mediated leaf disk transformation methods. The lactoferrin gene was expressed under control of both the auxin-inducible manopine synthase (mas) P2 promoter and the cauliflower mosaic virus (CaMV) 35S tandem promoter. The presence of the hLF cDNA in the genome of regenerated transformed potato plants was detected by polymerase chain reaction amplification methods. Full-length hLF protein was identified by immunoblot analysis in tuber tissue extracts from the transformed plants by immunoblot analysis. The hLF produced in transgenic plant tissues migrated during polyacrylamide gel electrophoresis as a single band with an approximate molecular mass equal to hLF. Auxin activation of the mas P2 promoter increased lactoferrin expression levels in transformed tuber and leaf tissues to approximately 0.1% of total soluble plant protein. Antimicrobial activity against four different human pathogenic bacterial strains was detected in extracts of lactoferrin-containing potato tuber tissues. This is the first report of synthesis of full length, biologically active hLF in edible plants.  相似文献   

18.
19.
We have produced the B subunit of the enterotoxigenic Escherichia coli (ETEC) heat-labile enterotoxin (LT-B) in transgenic maize seed. LT-B is a model antigen that induces a strong immune response upon oral administration and enhances immune responses to conjugated and co-administered antigens. Using a synthetic LT-B gene with optimized codon sequence, we examined the role of promoters and the SEKDEL endoplasmic reticulum retention motif in LT-B accumulation in callus and in kernels. Two promoters, the constitutive CaMV 35S promoter and the maize 27 kDa gamma zein promoter, which directs endosperm-specific gene expression in maize kernels, regulated LT-B expression. Ganglioside-dependent ELISA analysis showed that using the constitutive promoter, maximum LT-B level detected in callus was 0.04% LT-B in total aqueous-extractable protein (TAEP) and 0.01% in R1 kernels of transgenic plants. Using the gamma zein promoter, LT-B accumulation reached 0.07% in R1 kernels. The SEKDEL resulted in increased LT-B levels when combined with the gamma zein promoter. We monitored LT-B levels under greenhouse and field conditions over three generations. Significant variability in gene expression was observed between transgenic events, and between plants within the same event. A maximum of 0.3% LT-B in TAEP was measured in R3 seed of a transgenic line carrying CaMV 35S promoter/LT-B construct. In R3 seed of a transgenic line carrying the gamma zein promoter/LT-B construct, up to 3.7% LT-B in TAEP could be detected. We concluded that maize seed can be used as a production system for functional antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号