首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The optical properties of the crystalline lenses were studied in a variety of large predatory teleosts (bony fishes) that forage in the open ocean, some of them at considerable depths. We found the first fish lenses that are free of measurable longitudinal spherical aberration, i.e., are perfectly monofocal, in contrast to the multifocal lenses that are typical for smaller fishes living close to the surface. In fact, none of the lenses investigated in this study were clearly multifocal. Most, but not all, of the lenses had long normalized focal lengths (focal length/lens radius) of up to 3.3 lens radii. A monofocal lens of long focal length, combined with spectrally suitably placed cone pigments, may be the optimal solution for vision of high spatial and spectral resolutions in a habitat where the available spectrum of light is limited.  相似文献   

2.
3.
By rearing fish in various monochromatic illuminations we investigated (1) the potential for compensation of refractive error due to chromatic aberration, (2) the contributions of the chromatic channels to emmetropization, and (3) the role of color cues in the control of eye growth. Cichlid fish (Aequidens pulcher) were reared for 6 months (12 h light/12 h dark) in monochromatic lights (623.5, 534.1, 485.0 nm; spectral purity 5–10 nm). Light levels were isoirradiant at 1.1·1012 quanta/s/cm2. Two control groups were reared in white light with down-welling illuminances of 0.2 and 33 lx. Nasotemporal diameters (NTDs) of the eyes were measured in relation to lens size. Due to the oblique axis of highest acuity vision in cichlids, NTD is considered to be a more important dimension than axial length. Variances in NTD were equally small in all rearing groups. NTDs were enlarged with increasing wavelengths of the rearing lights with highly significant values over controls in the red-light group. The wavelength-dependent size of the eyes matched the changes in focal length due to longitudinal chromatic aberration. Complete recovery from eye enlargement was observed after fish reared in red light were exposed to a white light regime for 5 weeks. Small variances in NTD in all groups indicated stringent control of eye growth in the absence of color cues. The reversibility of the increase in NTD in fish reared in red light suggests that the eyes were emmetropized by visually guided mechanisms. Eye size in fish reared in white light was intermediate between the values expected if only blue-sensitive single or the red- and green-sensitive double cones contributed to the control of eye growth. This suggests that all chromatic channels participate in emmetropizing the fish eye.  相似文献   

4.
Many insect species have darkly coloured eyes, but distinct colours or patterns are frequently featured. A number of exemplary cases of flies and butterflies are discussed to illustrate our present knowledge of the physical basis of eye colours, their functional background, and the implications for insect colour vision. The screening pigments in the pigment cells commonly determine the eye colour. The red screening pigments of fly eyes and the dorsal eye regions of dragonflies allow stray light to photochemically restore photoconverted visual pigments. A similar role is played by yellow pigment granules inside the photoreceptor cells which function as a light-controlling pupil. Most insect eyes contain black screening pigments which prevent stray light to produce background noise in the photoreceptors. The eyes of tabanid flies are marked by strong metallic colours, due to multilayers in the corneal facet lenses. The corneal multilayers in the gold-green eyes of the deer fly Chrysops relictus reduce the lens transmission in the orange-green, thus narrowing the sensitivity spectrum of photoreceptors having a green absorbing rhodopsin. The tapetum in the eyes of butterflies probably enhances the spectral sensitivity of proximal long-wavelength photoreceptors. Pigment granules lining the rhabdom fine-tune the sensitivity spectra.  相似文献   

5.
Regulation of light flux by pupil mechanisms in the UV-sensitive superposition eye of owl-fly Ascalaphus macaronius (Neuroptera) was studied with a fast reflection microspectrophotometric technique. The spectral sensitivity of pupil reaction, which was calculated on the basis of changes of transient amplitude reflection, was almost identical with the one of Deilephila eye. This indicates that in spite of different life styles and spectral sensitivities of photoreceptors, pupil closing is triggered by the same photosensitive structure in both eyes. By measuring the spectra of reflected light from the Ascalaphus eye between 400 and 700 nm after different dark periods following light stimulation, it was established that the restoration of reflection was much faster in the red than in the blue spectral range. Based on this, we propose that two different pupil mechanisms with different spectral absorption characteristics are involved in light-flux regulation. Fast-reacting pupil is probably represented by screening pigment migration in the secondary pigment cells and a slow blue-absorbing system by the activity in primary pigment cells. The importance of two different pupils for the photoregeneration of visual pigment is discussed. Accepted: 1 October 1998  相似文献   

6.
While larval sea lampreys exist as eyeless filter feeders for several years, they transform into free-swimming juveniles (transformers) that attach parasitically to prey fish as they develop sexual maturity. This study examines lamprey lens development and optics and, since the lens is often the only refractive component of an aquatic eye, the data also provide an indication of visual ability during transformer and adult periods of life. Seven adult sea lampreys (0.40–0.55 m) and eight transformers (0.15–0.18 m) were sacrificed, the eyes removed and lenses dissected, measured, and placed in an automated laser scanning instrument. Back vertex focal length (spherical aberration) was measured for 14 beam positions across each lens by using a digital camera to record the position of the refracted beam. Transformer lenses exhibit positive spherical aberration, with average focal lengths varying from about 2.40 mm near the lens center and 1.06 mm at the lens periphery. On the other hand, the lenses from adults are largely corrected for spherical aberration, with average focal lengths varying from 2.19 mm to 2.44 mm. This result indicates that the younger lenses do not have a gradient refractive index necessary to mitigate the aberration and that further study of this model may reveal the relation between lens embryology and the development of such a gradient.  相似文献   

7.
Lens regeneration studies in the adult newt suggest that molecular aspects of lens regeneration are complete within 5 weeks of lentectomy. However, very little is known about the optical properties of the regenerated lens. In an aquatic environment, the lens accounts for almost all of the refractive power of the eye, and thus, a fully functional lens is critical. We compared the optical properties of 9- and 26-week regenerated lenses in the red spotted newt, Notophthalmus viridescens, with the original lenses removed from the same eyes. At 9 weeks, the regenerated lenses are smaller than the original lenses and are histologically immature, with a lower density of lens proteins. The 9 week lenses have greater light transmission, but significantly reduced focal length and refractive index than the original lenses. This suggests that following 9 weeks of regeneration, the lenses have not recovered the functionality of the original lens. By 26 weeks, the transmission of light in the more mature lens is reduced, but the optical parameters of the lens have recovered enough to allow functional vision.  相似文献   

8.
Vietnamese leaf turtles (Geoemyda spengleri) were tested for their ability to focus on prey objects at various distances. Accommodation was continuously measured by infrared photoretinoscopy. All animals investigated during this study showed a surprisingly high precision of accommodation over a range of over 30 D. Measured accommodation matched the target distance accurately for distances between 3 and 17 cm. The turtles switched between independent and coupled accommodation in the two eyes. Independent accommodation was observed when the turtles inspected their environment visually without a defined object of interest. Coupled accommodation was only observed during binocular prey fixation. When a turtle aimed at a target, the symmetrical focus of both eyes persisted even if vision was totally blocked in one eye or altered by ophthalmic lenses. This suggests that the eyes were linked by internal neuronal mechanisms. The pupil of the eye responded clearly to changes in ambient light intensity. A strong decrease in pupil size was also observed when the eye was focused on a close target. In this case, the constriction of the pupil probably aids in the deformation of the eye lens during near-accommodation.  相似文献   

9.
Understanding the control of eye growth may lead to the prevention of nearsightedness (myopia). Chicks develop refractive errors in response to defocusing lenses by changing the rate of eye elongation. Changes in optical image quality and the optical signal in lens compensation are not understood. Monochromatic ocular aberrations were measured in 16 chicks that unilaterally developed myopia in response to unilateral goggles with −15D lenses and in 6 chicks developing naturally. There is no significant difference in higher-order root mean square aberrations (RMSA) between control eyes of the goggled birds and eyes of naturally developing chicks. Higher-order RMSA for a constant pupil size exponentially decreases in the chick eye with age more slowly than defocus. In the presence of a defocusing lens, the exponential decrease begins after day 2. In goggled eyes, asymmetric aberrations initially increase significantly, followed by an exponential decrease. Higher-order RMSA is significantly higher in goggled eyes than in controls. Equivalent blur, a new measure of image quality that accounts for increasing pupil size with age, exponentially decreases with age. In goggled eyes, this decrease also occurs after day 2. The fine optical structure, reflected in higher-order aberrations, may be important in understanding normal development and the development of myopia.  相似文献   

10.
Contraction due to light in excised eel irises appears to follow a simple first order law. The action spectrum for contraction has a maximum which agrees with the eel rhodopsin absorption maximum. Inasmuch as rhodopsin is the rod pigment-opsin complex and the iris sphincter pupillae evolves from the pigment epithelium of the retina in the region of the iris, the muscle pigment might be the same as the visual pigment. In the human eye the contraction of the iris sphincter is activated only by light incident on the retina and the pupil diameter varies inversely with the square root of the light intensity. The inverse first power relation observed in the present experiments suggests a more primitive origin for the light reaction in eel irises. Relaxation is a much slower process and can be approximated as the sum of two first order processes.  相似文献   

11.
This experiment tested effects of human eye pigmentation depending on the ethnicity on suppression of nocturnal melatonin secretion by light. Ten healthy Caucasian males with blue, green, or light brown irises (light-eyed Caucasians) and 11 Asian males with dark brown irises (dark-eyed Asians) volunteered to participate in the study. The mean ages of the light-eyed Caucasians and dark-eyed Asians were 26.4 +/- 3.2 and 25.3 +/- 5.7 years, respectively. The subjects were exposed to light (1,000 lux) for 2 h at night. The starting time of exposure was set to 2 h before the time of peak salivary melatonin concentration of each subject, which was determined in a preliminary experiment. Salivary melatonin concentration and pupil size were measured before exposure to light and during exposure to light. The percentage of suppression of melatonin secretion by light was calculated. The percentage of suppression of melatonin secretion 2 h after the start of light exposure was significantly larger in light-eyed Caucasians (88.9 +/- 4.2%) than in dark-eyed Asians (73.4 +/- 20.0%) (P < 0.01). No significant difference was found between pupil sizes in light-eyed Caucasians and dark-eyed Asians. These results suggest that sensitivity of melatonin to light suppression is influenced by eye pigmentation and/or ethnicity.  相似文献   

12.
  1. The optics of the corneal facet lenses from the dorsal rim area (DRA) and from the dorso-lateral areas (DA) of the compound eye of the cricket Gryllus bimaculatus were studied.
  2. The DRA of the cricket eye contains quite normally shaped facet lenses. The diameter of the facet lens in the DA is 2-fold larger compared to that in the DRA. The radius of curvature of the front surface is distinctly less in the DA facet lenses, as the surface of the facet lenses in the DRA are virtually flat.
  3. The averaged axial refractive index of the facet lenses of Gryllus bimaculatus, measured by interference microscopy, was 1.496 ± 0.008 (n = 42) in the DRA and 1.469 ± 0.004 (n = 39) in the DA. The geometrical thickness of the lenses was calculated to be 77 ± 3 μm (n = 42) in the DRA and 56 ± 1 μm (n = 39) in the DA.
  4. Analysis of the diffraction pattern obtained with a point light source revealed distinct focusing properties of both the DRA and the DA facet lenses; striking Airy-like diffraction patterns were obtained in both cases.
  5. Focal distances measured directly at the backfocal plane were 40 ± 8 μm (n = 84) in the DRA of all the animals studied, and 60–90 μm (n = 62) in DA depending on the animal. Analysis of the diffraction of the point light source yielded very similar focal distances: 40 ± 5 μm (n = 10) in DRA and 81 ± 8 μm (n = 11) in DA. In the DRA, focal distance of the facet lenses was smaller than the cone length, 58 ± 3 μm (n = 9) while in the DA the focal distance matched the effective cone length, 71 ± 5 μm (n = 16).
  相似文献   

13.
A wave-optical model for the integrated facet lens-rhabdomere system of fly eyes is used to calculate the effective light power in the rhabdomeres when the eye is illuminated with a point light source or with an extended source. Two rhabdomere types are considered: the slender rhabdomeres of R7,8 photoreceptors and the wider, but tapering R1-6 rhabdomeres. The angular sensitivities of the two rhabdomere types have been calculated as a function of F-number and wavelength by fitting Gaussian functions to the effective light power. For a given F-number, the angular sensitivity broadens with wavelength for the slender rhabdomeres, but it stays approximately constant for the wider rhabdomeres. The integrated effective light power increases with the rhabdomere diameter, but it is for both rhabdomere types nearly independent of the light wavelength and F-number. The results are used to interpret the small F-number of Drosophila facet lenses. Presumably the small head puts a limit to the size of the facet lens and favors a short focal length.  相似文献   

14.
The eyes of galatheid squat lobsters (Munida rugosa) are shown to be of the reflecting superposition type. In the dark-adapted state corneal lenses focus light at the level of the rhabdoms and light from more than 1000 facets is redirected to the superposition focus by the reflecting surfaces of the crystalline cones. When the eye is light adapted, apposition optics are used. In this state paraxial light is focused by the corneal lens and the parabolic proximal end of the cone onto the distal end of a rhabdomeric lightguide. The latter transmits light across the clear zone to the rhabdom layer. In the dorsal part of the eye the individual ommatidia become progressively shorter until the cones and rhabdoms are no longer separated by a clear zone. Although formerly considered to be developing ommatidia, they are shown to be retained specifically for scanning the downwelling irradiance.Abbreviations RI refractive index - SEM scanning electron microscope  相似文献   

15.
This review identifies a number of exciting new developments in the understanding of vision in cartilaginous fishes that have been made since the turn of the century. These include the results of studies on various aspects of the visual system including eye size, visual fields, eye design and the optical system, retinal topography and spatial resolving power, visual pigments, spectral sensitivity and the potential for colour vision. A number of these studies have covered a broad range of species, thereby providing valuable information on how the visual systems of these fishes are adapted to different environmental conditions. For example, oceanic and deep-sea sharks have the largest eyes amongst elasmobranchs and presumably rely more heavily on vision than coastal and benthic species, while interspecific variation in the ratio of rod and cone photoreceptors, the topographic distribution of the photoreceptors and retinal ganglion cells in the retina and the spatial resolving power of the eye all appear to be closely related to differences in habitat and lifestyle. Multiple, spectrally distinct cone photoreceptor visual pigments have been found in some batoid species, raising the possibility that at least some elasmobranchs are capable of seeing colour, and there is some evidence that multiple cone visual pigments may also be present in holocephalans. In contrast, sharks appear to have only one cone visual pigment. There is evidence that ontogenetic changes in the visual system, such as changes in the spectral transmission properties of the lens, lens shape, focal ratio, visual pigments and spatial resolving power, allow elasmobranchs to adapt to environmental changes imposed by habitat shifts and niche expansion. There are, however, many aspects of vision in these fishes that are not well understood, particularly in the holocephalans. Therefore, this review also serves to highlight and stimulate new research in areas that still require significant attention.  相似文献   

16.
Hundreds of ocelli are embedded in the dorsal shell plates of certain chitons. These ocelli each contain a pigment layer, retina, and lens, but it is unknown whether they provide chitons with spatial vision. It is also unclear whether chiton lenses are made from proteins, like nearly all biological lenses, or from some other material. Electron probe X-ray microanalysis and X-ray diffraction revealed that the chiton Acanthopleura granulata has the first aragonite lenses ever discovered. We found that these lenses allow A. granulata's ocelli to function as small camera eyes with an angular resolution of about 9°-12°. Animals responded to the sudden appearance of black, overhead circles with an angular size of 9°, but not to equivalent, uniform decreases in the downwelling irradiance. Our behavioral estimates of angular resolution were consistent with estimates derived from focal length and receptor spacing within the A. granulata eye. Behavioral trials further indicated that A. granulata's eyes provide the same angular resolution in both air and water. We propose that one of the two refractive indices of the birefringent chiton lens places a focused image on the retina in air, whereas the other does so in water.  相似文献   

17.
Box jellyfish, or cubomedusae, possess an impressive total of 24 eyes of four morphologically different types. Compared to other cnidarians they also have an elaborate behavioral repertoire, which for a large part seems to be visually guided. Two of the four types of cubomedusean eyes, called the upper and the lower lens eye, are camera type eyes with spherical fish-like lenses. Here we explore the electroretinograms of the lens eyes of the Caribbean species, Tripedalia cystophora, and the Australian species, Chiropsalmus sp. using suction electrodes. We show that the photoreceptors of the lens eyes of both species have dynamic ranges of about 3 log units and slow responses. The spectral sensitivity curves for all eyes peak in the blue-green region, but the lower lens eye of T. cystophora has a small additional peak in the near UV range. All spectral sensitivity curves agree well with the theoretical absorbance curve of a single opsin, strongly suggesting color-blind vision in box jellyfish with a single receptor type. A single opsin is supported by selective adaptation experiments.  相似文献   

18.
Refractive errors in vision can be caused by aberrant axial length of the eye, irregular corneal shape, or lens abnormalities. Causes of eye length overgrowth include multiple genetic loci, and visual parameters. We evaluate zebrafish as a potential animal model for studies of the genetic, cellular, and signaling basis of emmetropization and myopia. Axial length and other eye dimensions of zebrafish were measured using spectral domain-optical coherence tomography (SD-OCT). We used ocular lens and body metrics to normalize and compare eye size and relative refractive error (difference between observed retinal radial length and controls) in wild-type and lrp2 zebrafish. Zebrafish were dark-reared to assess effects of visual deprivation on eye size. Two relative measurements, ocular axial length to body length and axial length to lens diameter, were found to accurately normalize comparisons of eye sizes between different sized fish (R2 = 0.9548, R2 = 0.9921). Ray-traced focal lengths of wild-type zebrafish lenses were equal to their retinal radii, while lrp2 eyes had longer retinal radii than focal lengths. Both genetic mutation (lrp2) and environmental manipulation (dark-rearing) caused elongated eye axes. lrp2 mutants had relative refractive errors of −0.327 compared to wild-types, and dark-reared wild-type fish had relative refractive errors of −0.132 compared to light-reared siblings. Therefore, zebrafish eye anatomy (axial length, lens radius, retinal radius) can be rapidly and accurately measured by SD-OCT, facilitating longitudinal studies of regulated eye growth and emmetropization. Specifically, genes homologous to human myopia candidates may be modified, inactivated or overexpressed in zebrafish, and myopia-sensitizing conditions used to probe gene-environment interactions. Our studies provide foundation for such investigations into genetic contributions that control eye size and impact refractive errors.  相似文献   

19.
Information on the anatomy of the eye and the topography of cone photoreceptor cells in the retina is presented for the Nile Tilapia (Oreochromis niloticus). In adults, the shape and proportions of the ocular components of the prominent eye conform to the general form of fish eyes, as determined using cryo-sectioned eyes. The lens is approximately spherical and there is little variation in the distance from the centre of the lens to the border between the choroid and retina at a range of angles about the optical axis. The average ratio of the distance from the centre of the lens to the retina: lens radius (Matthiessen’s ratio) is 2.44:1. In retinal wholemounts, single and double (twin) cone photoreceptors, forming a square mosaic, are present. Peak photoreceptor densities for both morphological cone types are found in the temporal retina. Using peak cone densities and estimates of focal length from cryo-sectioned eyes, visual acuity is calculated to be 5.44 cycles per deg. The lack of apparent specific ocular or retinal specializations and the relatively low visual acuity reflect the lifestyle of the Nile Tilapia and may allow it to adapt to changes in visual environment in its highly variable natural habitat as well as contributing to the ‘ecological flexibility’ of this species.  相似文献   

20.
The mechanisms of transdifferentiation of iris epithelial cells of Rana temporaria (Anura) in culture depending on influences from different sources were studied. In terminally differentiated iris cells, the process of transdifferentiation is initiated by dedifferentiation. Melanosomes are shed from iris cells due to cell surface activity. After depigmentation, iris epithelial cells become capable of proliferating and competent to react to the influences of various exogenous factors. Under the influence of retinal factors secreted by lentectomized tadpole eyes, both dorsal and ventral irises are converted to neural retina. Under the influence of factors from eye vesicles, the irises are converted to neural retina as well. Similar results were obtained in transfilter experiments, in which a 3-day period of transfilter interaction between the irises and eye vesicles ensured depigmentation of the iris followed by transdifferentiation into complete NR with visual receptor. Lentoid formation occurred under the influence of adult frog lens epithelium. Immunofluorescent analysis confirmed the lens nature of the lentoids. In control experiments under the conditions of the tadpole eye orbit, in which programming influences were absent, iris epithelial cells remained unaffected.
The problem of true cell-reprogramming to new differentiation in contrast to expression of inherent properties of the iris epithelial cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号