首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new, simple and rapid high-performance liquid chromatography (HPLC) method with UV detection has been developed for the determination of apovincaminic acid in human plasma. Apovincaminic acid and internal standard were isolated from plasma samples by solid-phase extraction with OASIS HLB cartridges. The chromatographic separation was accomplished on a reversed-phase C(18) column and UV detection was set at 311 nm. The calibration curves were linear in the concentration range of 2.4-240.0 ng/ml, and the limits of quantification was 2.4 ng/ml. The precision and accuracy ranged from 0.84 to 8.54% and 91.5 to 108.3%, respectively. The developed method was subsequently applied to study the pharmacokinetics of apovincaminic acid in a group of 20 human subjects at a single oral dose of 10mg of vinpocetine tablet.  相似文献   

2.
A rapid method for the determination of olanzapine in plasma using high-performance liquid chromatography with ultra violet detection is described. Olanzapine was extracted from plasma with a mixture of hexane/dichloromethane (85:15), and then back extracted into phosphate buffer pH 2.8. Separation was achieved on a RP Select B C(18) column and commonly administered drugs did not interfere with the assay. The limit of quantitation was 1.5 microg/l and the inter-day and intra-day relative standard deviations were less than 10%. Olanzapine was shown to be stable in plasma for up to 7 days when stored at 4 degrees C. Moreover, the addition of ascorbic acid was not necessary for the achievement of chemical stability during storage, or during the assay procedure. The method has been used to measure olanzapine concentrations in patients treated with various doses of the drug varying from 5 to 40 mg/day.  相似文献   

3.
A simple, rapid and reproducible high-performance liquid chromatographic assay for cisapride and norcisapride in human plasma is described. Samples of plasma (150 μl) were extracted using a C18 solid-phase cartridge. Regenerated tubes were eluted with 1.0 ml of methanol, dried, redissolved in 150 μl of methanol and injected. Chromatography was performed at room temperature by pumping acetonitrile–methanol–0.015 M phosphate buffer pH 2.2–2.3 (680:194:126, v/v/v) at 0.8 ml/min through a C18 reversed-phase column. Cisapride, norcisapride and internal standard were detected by absorbance at 276 nm and were eluted at 4.3, 5.3 and 8.1 min, respectively. Calibration plots in plasma were linear (r>0.998) from 10 to 150 ng/ml. Intraday precisions for cisapride and norcisapride were 3.3% and 5.4%, respectively. Interday precisions for cisapride and norcisapride were 9.6% and 9.0%, respectively. Drugs used which might be coadministered were tested for interference.  相似文献   

4.
A method for the analysis of [1-(4-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one] (CFM-2) and its analogues CFM-3, CFM-4 and CFM-5 in rat plasma was developed. The 2,3-benzodiazepines (2,3-BZs) were extracted by liquid–liquid extraction and analyzed using high-performance liquid chromatography (HPLC) with ultraviolet detection (UV) at 240 nm. The method exhibited a large linear range from 0.05 to 2 μg/ml with an intra-assay accuracy for all studied compounds ranging from 92 to 105.5%; whereas the intra-assay precision ranged from 0.59 to 8.16% in rat plasma. The inter-assay accuracy of CFM-2, CFM-4 and their 3-methyl derivatives, CFM-3 and CFM-5 ranged from 92.2 to 107% and the inter-assay precision ranged from 2.17 to 11.9% in rat plasma. The lower limit of detection was 5.5 ng/ml for CFM-2, 6.5 ng/ml for CFM-3, 7 ng/ml for CFM-4 and 8.5 ng/ml for CFM-5 in rat plasma. The pharmacokinetic study demonstrated that 2,3-BZs achieved a peak plasma concentration between 45 and 75 min after drug administration. Moreover, we observed that plasma chromatograms of rats treated with CFM-3, CFM-4 and CFM-5, respectively, showed a peak consistent with CFM-2. Our study suggests that CFM-4, CFM-5 and CFM-3 are prodrugs of CFM-2, in which they are biotransformed in vivo via different metabolic pathways. In particular, CFM-2 has been proven to possess anticonvulsant activity in various models of seizures, acting as α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) receptor antagonist.  相似文献   

5.
The role of the Mg2+ cation on antihypertensive molecule binding on human serum albumin (HSA) was studied by affinity chromatography. The thermodynamic data corresponding to this binding were determined for a wide range of Mg2+ concentrations (c). For the nifedipine molecule, an increase in the Mg2+ concentration produced a decrease in binding due to a decrease in the electrostatic interactions. For verapamil and diltiazem, which have the highest solvent accessible surface area, the solute binding on HSA was divided into two Mg2+ concentration regions. For a low c value below c(c) (approximately 1.6 mmol/l), the binding dependence with c was similar to that of nifedipine. For c above c(c) the hydrophobic effect created in the bulk solvent associated with a decrease in the van der Waals interactions between the solute molecule and the HSA implied a decrease in its binding. These results showed that for patients with hypertension, an Mg2+ supplementation during treatment with these antihypertensive molecules can increase the active pharmacological molecule concentration.  相似文献   

6.
The high-performance liquid chromatographic method with UV detection described below permits the selective determination of traces of palladium in human urine. After UV photolysis, during which the complete organic matrix was destroyed, the palladium was selectively enriched by solid-phase extraction (SPE). The reversed-phase C18 SPE column material was loaded with the ligand N,N-diethyl-N′-benzoylthiourea (DEBT) which shows an excellent complexing capacity for palladium in acidic solutions and at room temperature. The Pd(DEBT)2 complex was eluted with ethanol. After isocratic separation on the analytical column (MeOH/H2O 98:2 (v/v)), the complex was detected at 274 nm. The detection limit was 10 ng Pd/l. The relative standard deviations (RSD) of the within-series imprecision were in the range between 11% (75 ng Pd/l) and 7% (180 ng Pd/l). The between-day imprecision was 11% (75 ng Pd/l) and 5% (180 ng Pd/l). The recovery rates ranged between 94 and 96%. Using this method, urine samples of 44 persons from the general population were analysed. Only in one urine sample could palladium be detected. For comparison, 10 persons with occupational palladium exposure were examined. The urinary concentrations ranged from <10 to 2538 ng/l.  相似文献   

7.
A high-performance liquid chromatographic analytical method was developed for the determination of oxytetracycline in Artemia nauplii. A solid-phase extraction protocol was used to recover oxytetracycline and the internal standard tetracycline, from the Artemia samples. Oxytetracycline was analyzed using a 150 × 4.6 mm I.D. Hypersil-ODS column, a mobile phase of acetonitrile-tetrahydrofuran-0.01 M oxalic acid buffer (pH3.0) (15:3:82, v/v), and an ultraviolet detection wavelength of 365 nm. The calibration curve of oxytetracycline in Artemia was linear (r2 = 0.9998) from 0.1 to 6.4 μg/g of tissue. Using a signal-to-noise ratio of 4:1 the oxytetracycline detection limit was 10 ng/g of tissue. Mean recovery of oxytetracycline amounted to 97%, while intra-assay variability was 1.5%. Quantitative data from an in-vivo feeding study indicated an excellent uptake of oxytetracycline by Artemia, as its levels reached 25.6 μg per g of nauplii.  相似文献   

8.
An improved high-performance liquid chromatographic method has been developed to measure human plasma concentrations of the analgesic nonsteroidal anti-inflammatory drug ketorolac for use in pharmacokinetic studies. Samples were prepared for analysis by solid-phase extraction using Bond-Elut PH columns, with nearly complete recovery of both ketorolac and the internal standard tolmetin. The two compounds were separated on a Radial-Pak C18 column using a mobile phase consisting of water–acetonitrile–1.0 mol/l dibutylamine phosphate (pH 2.5) (30:20:1) and detected at a UV wavelength of 313 nm. Using only 250 μl of plasma, the standard curve was linear from 0.05 to 10.0 μg/ml.  相似文献   

9.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifampin in human plasma. Rifampin and sulindac (internal standard) are extracted from human plasma using a C2 Bond Elut extraction column. A 100-μl volume of 0.1 M HCl is added to the plasma before extraction to increase the retenction of the compounds on the extraction column. Methanol (1 ml) is used to elute the compounds and 0.5 ml of 3 mg/ml ascorbic acid in water is added to the final eluate to reduce the oxidation of rifampin. Separation is achieved by reversed-phase chromatography on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate-acetonitrile (55:45, v/v). Detection is by ultraviolet absorbance at 340 nm. The retention times of rifampin and internal standard are approximately 4.4 and 7.8 min, respectively. The assay is linear in concentration ranges of 50 to 35 000 ng/ml. The quantitation limit is 50 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

10.
A validated high-performance liquid chromatography method is described for the determination of scutellarin in rat plasma using a liquid-liquid extraction and ultraviolet (UV) absorbance detection. The separation used a Diamonsil ODS column (250 mm x 4.6mm i.d., 5 microm particle size) with an isocratic mobile phase consisting of methanol-acetonitrile-50mM dihydrogen ammonium phosphate buffer (22:15:63 (v/v/v), adjusted to pH 2.5 with 1M phosphoric acid). The ultraviolet detector operated at 335 nm. Plasma samples were extracted with ethyl acetate after acidification. The extraction recovery of scutellarin ranged from 68.1 to 80.5%. High selectivity and a low quantitation limit (0.050 microg/ml) were achieved. The linear range was 0.050-12.5 microg/ml, correlation coefficient r=0.9981. The method has a good reproducibility, R.S.D. values were below 7.9% for within-day and between-day precision. The method is simple, rapid, and applicable to preliminary pharmacokinetic studies of scutellarin in rats.  相似文献   

11.
12.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifabutin in human plasma. Rifabutin and sulindac (internal standard) are extracted from human plasma using a C8 Bond Elut extraction column. Methanol (1 ml) is used to elute the compounds. The methanol is dried down under nitrogen and reconstituted in 250 μl of mobile phase. Separation is achieved by HPLC on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate and 0.05 M sodium acetate at pH 4.0-acetonitrile (53:47, v/v). Detection is by ultraviolet absorbance at 275 nm. The retention times of rifabutin and internal standard were approximately 10.8 and 6.9 min, respectively. The assay is linear over the concentration range of 5–600 ng/ml. The quantitation limit was 5 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

13.
A simple HPLC method has been developed for the determination of ticlopidine in human plasma. Plasma samples were buffered at pH 9 and extracted with n-heptane-isoamyl alcohol (98.5: 1.5, v/v). Imipramine was used as internal standard. Chromatography was performed isocratically with acetonitrile-methanol-0.05 M KH2PO4 (20:25:55, v/v) at pH 3.0 containing 3% triethylamine at a flow-rate of 1 ml/min. A reversed-phase column, Supelcosil LC-8-DB, 15 cm × 4.6 mm I.D., 5 μm particle size, was used. The effluent was monitored by UV absorbance detection at 235 nm. The method showed good accuracy, precision and linearity in the concentration range 5–1200 ng/ml. The limit of quantitation was 5 ng/ml, with a precision (C.V.) of 8.91%, which is the same as that achieved by other authors with a previously published GC-MS method. The procedure described in this paper is simple and allows the routine assessment of ticlopidine plasma concentration in pharmacokinetic studies following therapeutic doses in human subjects.  相似文献   

14.
15.
When measuring fentanyl and midazolam simultaneously in the same plasma sample with standard high-performance liquid chromatography–ultraviolet (HPLC–UV) detection, overlap of the fentanyl peak by the midazolam peak occurs, which makes fentanyl determination impossible. We tested the hypothesis that by acidifying the methanol mobile phase with 0.02% perchloric acid, 70%, it would be possible to separate both peaks. The UV detector was set at 200 nm. Calibration curves for fentanyl (range 0–2000 pg/ml) and midazolam (range 0–400 ng/ml) were linear (r>0.99). The detection limits were 200 pg/ml (fentanyl) and 10 ng/ml (midazolam). Precision and accuracy for intra- and inter-assay variability as well as in-line validation with quality control samples (QCS) were acceptable (< 15 and 20%, respectively), except for fentanyl QCS of 200 pg/ml (17.8% precision). Although less sensitive than gas chromatography–mass spectrometry (GC–MS), reliable measurements of fentanyl, simultaneously with midazolam, can be performed with this HPLC–UV system.  相似文献   

16.
A high-performance liquid chromatographic method for the determination of trimethoprim metabolites in pig urine was developed. The metabolites — glucuronic acid and sulphuric acid conjugates of phenolic metabolites formed by demethylation of trimethoprim — were quantitated after treatment of urine with β-glucuronidase (Escherichia coli). The sulphuric acid conjugate was not susceptible to enzymatic hydrolysis and was therefore assayed as the conjugate by use of ion-pair chromatography on the reversed-phase column. In order to find suitable conditions for enzymatic hydrolysis of the glucoronides, the conjugates were obtained by gel chromatography of urine from a [14C]trimethoprim-treated pig.  相似文献   

17.
A reversed-phase high-performance liquid chromatographic method for the determination of benflumetol in human plasma is described. Benflumetol in plasma samples was extracted with a glacial acetic acid-ethyl acetate (1:100, v/v) mixture at pH 4.0. Chromatography was performed on a Spherisorb C18 column using a methanol-water-glacial acetic acid-diethyl amine (93:6:1:0.03, v/v) mixture as the mobile phase and UV-VIS detection at 335 nm. The identity and purity of the benflumetol peak were carefully examined, and the internal standard method was applied for its quantitation. The absolute recovery of benflumetol in spiked plasma samples was 92.91% over the concentration range 5–4000 ng/ml. The recovery of internal standard “8212” at a concentration of 300 ng/ml in spiked plasma was 84.85%. The detection limit of benflumetol was 11.8 ng/ml. Plasma concentration-time profiles in healthy volunteer adults were measured after a single-dose oral administration of 500 mg of benflumetol. The assay procedures were within the quality control limits.  相似文献   

18.
A simple and sensitive isocratic high-performance liquid chromatographic (HPLC) method with UV detection for the quantitation of perillic acid, a major circulating metabolite of perillyl alcohol and d-limonene, in plasma is described. Sample preparation involved protein precipitation and subsequent transfer and dilution with 10 mM NaHCO3. The mobile phase consisted of acetonitrile (36%) and 0.05 M ammonium acetate buffer pH 5.0 (64%). Separations were achieved on a C18 column and the effluent monitored for UV absorption at the analytes' respective UVmax. Separation was excellent with no interference from endogenous plasma constituents. This method was found suitable for quantifying drug concentrations in the range of 0.25 to 200.0 μg/ml using a 0.05-ml plasma sample, and was used to study the plasma pharmacokinetics of perillic acid in mice.  相似文献   

19.
A simple and sensitive HPLC method for the determination of gatifloxacin concentrations in human serum and urine was developed and validated. Serum proteins were removed by ultrafiltration through a filtering device after adding a displacing agent. Urine samples were diluted with mobile phase prior to injection. Separation was achieved with a C18 reverse-phase column and gatifloxacin concentrations were determined using ultraviolet detection. The quantitation limits of the assay were 100 ng/ml in serum and 1.0 microg/ml in urine. The assay method was successfully applied to a pharmacokinetic study of gatifloxacin in healthy volunteers.  相似文献   

20.
A high-performance liquid chromatography (HPLC) method using only 0.1 ml of serum or homogenate from brain areas has been developed for the determination of fluoxetine (FLU) and its metabolite, norfluoxetine (N-FLU), with ultraviolet detection at 227 nm. The small volume of sample required in this method allows studies in small animals, such as mouse. The method provides recoveries of up to 90% for both compounds. Acceptable coefficients of variation were found for both within-run and day-to-day assays. The limit of detection was 5.0 ng/ml. No interferences were found with tricyclic antidepressant drugs and benzodiazepines, which allows this method to be used in clinical studies. Pharmacokinetic parameters for the two compounds are reported in mouse serum, frontal cortex and caudate nucleus. We also report the values of FLU and N-FLU in serum from humans who were treated once daily with 20 mg of FLU, obtained after 1, 14 and 28 days of treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号