首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Molecular features that allow certain [NiFe] hydrogenases to catalyze the conversion of molecular hydrogen (H(2)) in the presence of dioxygen (O(2)) were investigated. Using X-ray absorption spectroscopy (XAS), we compared the [NiFe] active site and FeS clusters in the O(2)-tolerant membrane-bound hydrogenase (MBH) of Ralstonia eutropha and the O(2)-sensitive periplasmic hydrogenase (PH) of Desulfovibrio gigas. Fe-XAS indicated an unusual complement of iron-sulfur centers in the MBH, likely based on a specific structure of the FeS cluster proximal to the active site. This cluster is a [4Fe4S] cubane in PH. For MBH, it comprises less than ~2.7 ? Fe-Fe distances and additional longer vectors of ≥3.4 ?, consistent with an Fe trimer with a more isolated Fe ion. Ni-XAS indicated a similar architecture of the [NiFe] site in MBH and PH, featuring Ni coordination by four thiolates of conserved cysteines, i.e., in the fully reduced state (Ni-SR). For oxidized states, short Ni-μO bonds due to Ni-Fe bridging oxygen species were detected in the Ni-B state of the MBH and in the Ni-A state of the PH. Furthermore, a bridging sulfenate (CysSO) is suggested for an inactive state (Ni(ia)-S) of the MBH. We propose that the O(2) tolerance of the MBH is mainly based on a dedicated electron donation from a modified proximal FeS cluster to the active site, which may favor formation of the rapidly reactivated Ni-B state instead of the slowly reactivated Ni-A state. Thereby, the catalytic activity of the MBH is facilitated in the presence of both H(2) and O(2).  相似文献   

2.
Oxygen, either molecular oxygen or a reduction adduct, can tightly bind in the vicinity of the two forms of trivalent nickel occurring in hydrogenase from Chromatium vinosum, as evident from studies with 17O-enriched O2. This oxygen is not in the first coordination sphere of nickel. As has been reported earlier for hydrogenase from Desulfovibrio gigas (Fernandez, V.M., Hatchikian, A.C., Patil, D.S. and Cammack, R. (1986) Biochim. Biophys. Acta 883, 145-154), also the relative activity of the C.vinosum enzyme correlates well with the presence of only one of the two Ni(III) forms in the oxidized preparation. These results make it less likely that a specific oxygenation of only one of the Ni(III) forms would be the reason for the reversible inactivation of nickel hydrogenases by oxygen. Reaction of H2-reduced enzyme with 13CO now demonstrated beyond doubt that: (i) One 13CO molecule is a direct ligand to nickel in axial position; and (ii) hydrogen binds at the same coordination site as CO. It can also be concluded that hydrogen is not bound as a hydride ion, but presumably as molecular hydrogen. A simple way to explain the EPR spectra from the 13CO-adduct of the enzyme is to assume a monovalent state for the nickel.  相似文献   

3.
On the novel H2-activating iron-sulfur center of the "Fe-only" hydrogenases   总被引:1,自引:0,他引:1  
The two hydrogenases (I and II) of the anaerobic N2-fixing bacterium Clostridium pasteurianum (Cp) and the hydrogenases of the anaerobes Megasphaera elsdenii (Me) and Desulfovibrio vulgaris (strain Hildenborough, Dv), contain iron-sulfur clusters but not nickel. They are the most active hydrogenases known. All four enzymes in their reduced states give rise to EPR signals typical of [4Fe-4S]1+ clusters but exhibit novel EPR signals in their oxidized states. For example, Cp hydrogenase I exhibits a sharp rhombic EPR signal when oxidized under mild conditions but the enzyme is inactivated by over-oxidation and then exhibits an axial EPR signal. A similar axial signal is observed from mildly oxidized hydrogenase I after treatment with CO. EPR, M?ssbauer and ENDOR spectroscopy indicate that the EPR signals from the oxidized enzyme and its CO derivative arise from a novel spin-coupled Fe center. Low temperature magnetic circular dichroism (MCD) studies reveal that an EPR-silent Fe-S cluster with S greater than 1/2 is also present in oxidized hydrogenase I. From a study of all spectroscopic properties of Cp, Dv, and Me hydrogenases, it is concluded that the H2-activating site of all four is a novel Fe-S cluster with S greater than 0 and integer, which in the oxidized state is exchange-coupled to a S = 1/2 species. The data are most consistent with the S = 1/2 species being a low spin Fe(III) center. The H2-activating site is susceptible to oxidative rearrangements to yield both active and inactive states of the enzyme. We discuss the possible implications of these finding to methods of enzyme oxidation and purification procedures currently used for hydrogenases.  相似文献   

4.
Hydrogenases catalyze oxidoreduction of molecular hydrogen and have potential applications for utilizing dihydrogen as an energy source. [NiFe] hydrogenase has two different oxidized states, Ni-A (unready, exhibits a lag phase in reductive activation) and Ni-B (ready). We have succeeded in converting Ni-B to Ni-A with the use of Na2S and O2 and determining the high-resolution crystal structures of both states. Ni-B possesses a monatomic nonprotein bridging ligand at the Ni-Fe active site, whereas Ni-A has a diatomic species. The terminal atom of the bridging species of Ni-A occupies a similar position as C of the exogenous CO in the CO complex (inhibited state). The common features of the enzyme structures at the unready (Ni-A) and inhibited (CO complex) states are proposed. These findings provide useful information on the design of new systems of biomimetic dihydrogen production and fuel cell devices.  相似文献   

5.
Results are presented of the first rapid-mixing/rapid-freezing studies with a [NiFe]-hydrogenase. The enzyme from Chromatium vinosum was used. In particular the reactions of active enzyme with H2 and CO were monitored. The conversion from fully reduced, active hydrogenase (Nia-SR state) to the Nia-C* state was completed in less than 8 ms, a rate consistent with the H2-evolution activity of the enzyme. The reaction of CO with fully reduced enzyme was followed from 8 to 200 ms. The Nia-SR state did not react with CO. It was discovered, contrary to expectations, that the Nia-C* state did not react with CO when reactions were performed in the dark. When H2 was replaced by CO, a Nia-C* EPR signal appeared within 11 ms; this was also the case when H2 was replaced by Ar. With CO, however, the Nia-C* state decayed within 40 ms, due to the generation of the Nia-S.CO state (the EPR-silent state of the enzyme with bound CO). The Nia-C* state, induced after 11 ms by replacing H2 by CO in the dark, could be converted, in the frozen enzyme, into the EPR-detectable state with CO bound to nickel (Nia*.CO) by illumination at 30 K (evoking the Nia-L* state), followed by dark adaptation at 200 K. This can be explained by assuming that the Nia-C* state represents a formally trivalent state of nickel, which is unable to bind CO, whereas nickel in the Nia-L* and the Nia*.CO states is formally monovalent.  相似文献   

6.
The thermostable hydrogenase from Thiocapsa roseopersicina was examined by low-temperature ESR spectroscopy. Two types of signals were detected, from an oxidized iron-sulphur cluster and a nickel centre (Ni-A). In the oxidized protein additional signals were observed due to spin-spin interaction between the two paramagnetic centres. This interaction could be reversibly abolished by reduction to a redox potential below 105 mV. This implies that an additional redox centre is involved in the interaction, for which an Fe3+ ion is suggested. Reduction with hydrogen induced a second type of nickel ESR signal (Ni-C), corresponding to an intermediate redox state seen in other nickel hydrogenases. The Ni-C species was light-sensitive at cryogenic temperatures. At temperatures near to 4.2 K the Ni-C signal showed evidence of interaction with another paramagnetic centre, presumably a second iron-sulphur cluster. On reoxidation a signal due to a third Ni(III) species, Ni-B, increased in amplitude. These results establish that metal centres in the hydrogenase from T. roseopersicina are closely similar to those of the well-studied hydrogenase from Chromatium vinosum.  相似文献   

7.
8.
The reaction between hydrogen and the [NiFe]-hydrogenase from Allochromatium vinosum in its inactive form has been studied by stopped-flow infrared spectroscopy. The data, for the first time, clearly show that at room temperature enzyme in the unready state, either oxidized or reduced, does not react with hydrogen. Enzyme in the ready state reacts with hydrogen after a lag phase of about six seconds, whereby a specific reduction of the enzyme occurs. The lag phase and the rate of reduction of the ready enzyme are neither dependent on the enzyme concentration nor on the substrate concentration, i.e., substoichiometric and 8-fold excess amounts of H(2) reduce the ready enzyme at the same rate. Oxygen delays this reaction but does not prevent it. The infrared changes lead us to suggest that the hydroxyl group, bridging between the Ni and the Fe atom in the active site, becomes protonated during this reduction. At physiological temperatures, this property of the inactive ready enzyme enables a full development of activity by substoichiometric H(2) concentrations.  相似文献   

9.
The redox behaviour of the Ni(III)/Ni(II) transition in hydrogenase from Chromatium vinosum is described and compared with the redox behaviour of the nickel ion in the F420-nonreducing hydrogenase from Methanobacterium thermoautotrophicum. Analogous to the situation in the oxidised hydrogenase of Desulfovibrio gigas (Fernandez, V.M., Hatchikian, E.C., Patil, D.S. and Cammack, R. (1986) Biochim. Biophys. Acta 883, 145-154), the C. vinosum enzyme can also exist in two forms: the 'unready' form (EPR characteristics of Ni(III): gx,y,z = 2.32, 2.24, 2.01) and the 'ready' form (EPR characteristics Ni(III): gx,y,z = 2.34, 2.16, 2.01). Like in the oxidised enzyme of M. thermoautotrophicum the Ni(III)/Ni(II) transition for the unready form titrated completely reversible (both at pH 6.0 and pH 8.0). In contrast, the reversibility of the Ni(III)/Ni(II) transition in the ready enzyme was strongly dependent on pH and temperature. At pH 6.0 and 2 degrees C reduction of Ni(III) in ready enzyme was completely irreversible, whereas at pH 8.0 and 30 degrees C Ni(III) in both ready and unready enzyme titrated with E0' = -115 mV (n = 1). Hampered redox equilibration between the ready enzyme and the mediating dyes is interpreted in terms of an obstruction of the electron transfer from nickel at the active site to the artificial electron acceptors in solution. The origin of this obstruction might be related to possible changes in the protein structure induced by the activation process. The E0'-value of the Ni(III)/Ni(II) equilibrium was pH sensitive (-60 mV/delta pH) indicating that reduction of nickel is coupled to a protonation. A similar pH-dependence was observed for the titration of the spin-spin interaction of Ni(III) and a special form of the [3Fe-4S]+ cluster (E0' = +150 mV, pH 8.0, 30 degrees C). Redox equilibration of this coupling was extremely sensitive to pH and temperature. The uncoupled [3Fe-4S]+ cluster titrated pH-independently with E0' = -10 mV (pH 8.0, 30 degrees C).  相似文献   

10.
The binding of specific inhibitors to the ubiquinol oxidation pocket ("QP center") of cytochrome c reductase was analyzed before and after removal of bound phospholipid and the "Rieske" iron-sulfur protein using optical spectroscopy and fluorescence quench binding assays. The enzyme lacking iron-sulfur protein showed almost unchanged, tight binding of the E-beta-methoxyacrylate inhibitors oudemansin A and MOA-stilbene, whereas binding of the chromone inhibitor stigmatellin was almost completely abolished. The affinity of the weak inhibitor 3-undecyl-2-hydroxy-naphthoquinone was decreased. Oudemansin A binding to the defective pocket of the iron-sulfur protein-depleted enzyme was lowered by added phospholipid. It was deduced from these results that the QP center is a spacious pocket formed by domains of cytochrome b, bearing the E-beta-methoxcyacrylate binding site, and the iron-sulfur protein, bearing the stigmatellin binding site. Moreover, removal of the iron-sulfur protein leaves this pocket defective but essentially unchanged in its remaining binding capability. The affinity of three preparations of cytochrome c reductase, the complete, the delipidated, and the iron-sulfur depleted enzyme for E-beta-methoxyacrylate-stilbene, was analyzed for different redox states of the catalytic centers of cytochrome c reductase. The apparent Kd values for the different redox states were interpreted in terms of two conformational states. It is suggested that these changes reflect the two states of the "catalytic switch" proposed recently for the QP pocket of cytochrome c reductase (Brandt, U., and von Jagow, G. (1991) Eur. J. Biochem. 195, 163-170). According to the refined model presented in this work, changeover to the "b" state is triggered by reduction of the iron-sulfur cluster, and changeover back to the "FeS" state is triggered by electron transfer from the low potential onto the high potential heme b center. Our interpretation implies that the stability of the two states is affected by the redox states of the enzyme, but that additionally changing the redox states of the two centers is required for "switching" on a catalytic time scale.  相似文献   

11.
The large subunit HoxC of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha was purified without its small subunit. Two forms of HoxC were identified. Both forms contained iron but only substoichiometric amounts of nickel. One form was a homodimer of HoxC whereas the second also contained the Ni-Fe site maturation proteins HypC and HypB. Despite the presence of the Ni-Fe active site in some of the proteins, both forms, which lack the Fe-S clusters normally present in hydrogenases, cannot activate hydrogen. The incomplete insertion of nickel into the Ni-Fe site provides direct evidence that Fe precedes Ni in the course of metal center assembly.  相似文献   

12.
Redox titrations of the nickel ion in active hydrogenase from Methanobacterium thermoautotrophicum and Chromatium vinosum were performed in the absence of artificial redox mediators, by variation of the H2-partial pressure. These experiments revealed a redox behaviour of the nickel ion which differed remarkably from previous redox titrations in the presence of redox mediators. Notably the EPR signal of the species earlier characterized as monovalent nickel with bound hydrogen, behaved as an n = 2 redox component upon reduction under varying H2-partial pressures. The EPR signal was not a transient one and persisted upon removal of hydrogen. Possible redox processes to explain these observations are discussed. A similar behaviour of nickel was also observed in enzyme as present in intact cells of M. thermoautotrophicum. These results suggest that nickel hydrogenases possess a second site for reaction with H2.  相似文献   

13.
Redox titrations with hydrogenase from Chromatium vinosum show that its nickel ion can exist in 3, possibly 4, different redox states: the 3+, 2+, 1+ and possibly a zero valent state. The 1+ state is unstable: oxidation to Ni(II) occurs unless H2 gas is present. The Ni(I) coordination, but not that of Ni(III), is highly light sensitive. A photoreaction occurs on illumination. It is irreversible below 77 K, but reversible at 200 K. The rate of this photodissociation reaction in 2H2O is nearly 6-times slower than in H2O, indicating the breakage of a nickel-hydrogen bond. This forms the first evidence for an H atom in the direct coordination sphere of Ni in hydrogenase and for the involvement of this metal in the reaction with hydrogen.  相似文献   

14.
The relationship between the three-dimensional structures of iron-sulfur proteins and the redox potentials of their iron-sulfur clusters is of fundamental importance. We report calculations of the redox potentials of the [Fe4S4(S-cys)4]-2/-3 couple in four crystallographically characterized proteins: Azotobacter vinelandii ferredoxin I, Peptococcus aerogenes ferredoxin, Bacillus thermoproteolyticus ferredoxin, and Chromatium vinosum high potential iron protein (HiPIP). Our calculations use the "protein dipoles Langevin dipoles" microscopic electrostatic model, which includes both protein and solvent water. The variations in calculated redox potentials are in excellent agreement with experimental data. In particular, our results confirm the important role of amide groups close to the cluster in separating the potential of C. vinosum HiPIP from those of the other three proteins. However, the potentials of these latter exhibit a substantial range despite extremely similar amide group environments of their clusters. Our results show that the potentials in these proteins are tuned in part by varying the access of solvent water to the neighborhood of the cluster. Our calculations provide the first successful quantitative modeling of the protein control of iron-sulfur cluster redox potentials.  相似文献   

15.
The dimer [(dippe)Ni(μ-S)]2 reacts with organic electrophiles to give the alkylated species [(dippe)2Ni2(μ-S)(μ-SR)]+. Stronger alkylating agents lead to double alkylation and cleavage of the dimer. Protonation similarly occurs with strong acids. The structures of several of these species have been determined.  相似文献   

16.
Oxidative stress is created in aerobic organisms when molecular oxygen chemically oxidizes redox enzymes, forming superoxide (O2*-) and hydrogen peroxide (H2O2). Prior work identified several flavoenzymes from Escherichia coli that tend to autoxidize. Of these, fumarate reductase (Frd) is notable both for its high turnover number and for its production of substantial O2*- in addition to H2O2. We have sought to identify characteristics of Frd that predispose it to this behavior. The ability of excess succinate to block autoxidation and the inhibitory effect of lowering the flavin potential indicate that all detectable autoxidation occurs from its FAD site, rather than from iron-sulfur clusters or bound quinones. The flavin adenine dinucleotide (FAD) moiety of Frd is unusually solvent-exposed, as evidenced by its ability to bind sulfite, and this may make it more likely to react adventitiously with O2*-. The autoxidizing species is apparently fully reduced flavin rather than flavosemiquinone, since treatments that more fully reduce the enzyme do not slow its turnover number. They do, however, switch the major product from O2*- to H2O2. A similar effect is achieved by lowering the potential of the proximal [2Fe-2S] cluster. These data suggest that Frd releases O2*- into bulk solution if this cluster is available to sequester the semiquinone electron; otherwise, that electron is rapidly transferred to the nascent superoxide, and H2O2 is the product that leaves the active site. This model is supported by the behavior of "aspartate oxidase" (aspartate:fumarate oxidoreductase), an Frd homologue that lacks Fe-S clusters. Its dihydroflavin also reacts avidly with oxygen, and H2O2 is the predominant product. In contrast, succinate dehydrogenase, with high potential clusters, generates O2*- exclusively. The identities of enzyme autoxidation products are significant because O2*- and H2O2 damage cells in different ways.  相似文献   

17.
Characterization of the soluble hydrogenase from Desulfovibrio africanus   总被引:3,自引:0,他引:3  
The soluble hydrogenase from Desulfovibrio africanus has been isolated and characterized. The enzyme consists of two subunits of 65 kDa and 27 kDa. Its absorption spectrum is typical of an iron-sulfur protein. The protein contains 12 iron atoms, 10 labile sulfur atoms and 0.9 nickel atom per molecule. D. africanus hydrogenase is rapidly activated under reducing conditions and exhibits a specific activity of 570 mumoles H2 evolved/min/mg. The EPR spectrum of the oxidized enzyme shows no Ni(III) signals. Upon reduction under hydrogen, the protein sample exhibits signals due to nickel with g values at 2.21, 2.17 and 2.01 correlating with the active state of the enzyme.  相似文献   

18.
A soluble hydrogenase from the halophilic sulfate reducing bacterium Desulfovibrio salexigens, strain British Guiana (NCIB 8403) has been purified to apparent homogeneity with a final specific activity of 760 mumoles H2 evolved/min/mg (an overall 180-fold purification with 20% recovery yield). The enzyme is composed of two non-identical subunits of molecular masses 62 and 36 kDa, respectively, and contains approximately 1 Ni, 12-15 Fe and 1 Se atoms/mole. The hydrogenase shows a visible absorption spectrum typical of an iron-sulfur containing protein (A400/A280 = 0.275) and a molar absorbance of 54 mM-1cm-1 at 400 nm. In the native state (as isolated, under aerobic conditions), the enzyme is almost EPR silent at 100 K and below. However, upon reduction under H2 atmosphere a rhombic EPR signal develops at g-values 2.22, 2.16 and around 2.0, which is optimally detected at 40 K. This EPR signal is reminiscent of the nickel signal C (g-values 2.19, 2.16 and 2.02) observed in intermediate redox states of the well characterized D. gigas nickel containing hydrogenase and assigned to nickel by 61 Ni isotopic substitution (J.J.G. Moura, M. Teixeira, I. Moura, A.V. Xavier and J. Le Gall (1984), J. Mol. Cat., 23, 305-314). Upon longer incubation with H2 the "2.22" EPR signal decreases. During the course of a redox titration under H2, this EPR signal attains a maximal intensity around--380 mV. At redox states where this "2.22" signal develops (or at lower redox potentials), low temperature studies (below 10 K) reveals the presence of other EPR species with g-values at 2.23, 2.21, 2.14 with broad components at higher fields. This new signal (fast relaxing) exhibits a different microwave power dependence from that of the "2.22" signal, which readily saturates with microwave power (slow relaxing). Also at low temperature (8 K) typical reduced iron-sulfur EPR signals are concomitantly observed with gmed approximately 1.94. The catalytic properties of the enzyme were also followed by substrate isotopic exchange D2/H+ and H2 production measurements.  相似文献   

19.
An X-ray absorption spectroscopic study of structural changes occurring at the Ni site of Chromatium vinosum hydrogenase during reductive activation, CO binding, and photolysis is presented. Structural details of the Ni sites for the ready silent intermediate state, SI(r), and the carbon monoxide complex, SI-CO, are presented for the first time in any hydrogenase. Analysis of nickel K-edge energy shifts in redox-related samples reveals that reductive activation is accompanied by an oscillation in the electron density of the Ni site involving formally Ni(III) and Ni(II), where all the EPR-active states (forms A, B, and C) are formally Ni(III), and the EPR-silent states are formally Ni(II). Analysis of XANES shows that the Ni site undergoes changes in the coordination number and geometry that are consistent with five-coordinate Ni sites in forms A, B, and SI(u); distorted four-coordinate sites in SI(r) and R; and a six-coordinate Ni site in form C. EXAFS analysis reveals that the loss of a short Ni-O bond accounts for the change in coordination number from five to four that accompanies formation of SI(r). A shortening of the Ni-Fe distance from 2.85(5) A in form B to 2.60(5) A also occurs at the SI level and is thus associated with the loss of the bridging O-donor ligand in the active site. Multiple-scattering analysis of the EXAFS data for the SI-CO complex reveals the presence of Ni-CO ligation, where the CO is bound in a linear fashion appropriate for a terminal ligand. The putative role of form C in binding H(2) or H(-) was examined by comparing the XAS data from form C with that of its photoproduct, form L. The data rule out the suggestion that the increase in charge density on the NiFe active site that accompanies the photoprocess results in a two-electron reduction of the Ni site [Ni(III) --> Ni(I)] [Happe, R. P., Roseboom, W., and Albracht, S. P. J. (1999) Eur. J. Biochem. 259, 602-608]; only subtle structural differences between the Ni sites were observed.  相似文献   

20.
Azospirillum brasilense glutamate synthase has been studied by absorption, electron paramagnetic resonance, and circular dichroism spectroscopies in order to determine the type and number of iron-sulfur centers present in the enzyme alpha beta protomer and to gain information on the role of the flavin and iron-sulfur centers in the catalytic mechanism. The FMN and FAD prosthetic groups are demonstrated to be non-equivalent with respect to their reactivities with sulfite. Sulfite reacts with only one of the two flavins forming an N(5)-sulfite adduct with a Kd of approximately 1 mM. The enzyme-sulfite complex is reduced by NADPH, and the complexed sulfite is competitively displaced by 2-oxoglutarate, which suggests the reactive flavin to be at the imine-reducing site. These data are in agreement with the two-site model of the enzyme active center proposed on the basis of kinetic studies [Vanoni, M.A., Nuzzi, L., Rescigno, M., Zanetti, G., & Curti, B. (1991) Eur. J. Biochem. 202, 181-189]. Each enzyme protomer was found, by chemical analysis, to contain 12.1 +/- 0.5 mol of non-heme iron. Electron paramagnetic resonance spectroscopic studies on the oxidized and reduced forms of glutamate synthase demonstrated the presence of three distinct iron-sulfur centers per enzyme protomer. The oxidized enzyme exhibits an axial spectrum with g values at 2.03 and 1.97, which is highly temperature-dependent and integrates to 1.1 +/- 0.2 spin/protomer. This signal is assigned to a [3Fe-4S]1+ cluster (Fe-S)I. Reduction of the enzyme with an NADPH-regenerating system results in reduction of the [3Fe-4S]1+ center to a species with a g approximately 12 signal characteristic of the S = 2 spin state of a [3Fe-4S]0 cluster. The NADPH-reduced enzyme also exhibits an [Fe-S] signal at g values of 1.98, 1.95, and 1.88, which integrates to 0.9 spin/protomer and is due to a second cluster (Fe-S)II. Reduction of the enzyme with the light/deazaflavin method results in a signal characteristic of [Fe-S] clusters with g values of 2.03, 1.92, and 1.86 and an integrated intensity of 1.9 spin/protomer. This signal arises from reduction of the (Fe-S)II center and from that of the third, lower potential iron-sulfur center (Fe-S)III. Circular dichroism spectral data on the oxidized and reduced forms of the enzyme are more consistent with the assignment of (Fe-S)II and (Fe-S)III as [4Fe-4S] clusters rather than [2Fe-2S] centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号