首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Detection of functional DNA motifs via statistical over-representation   总被引:14,自引:0,他引:14  
  相似文献   

3.
4.
基因表达调控中的核因子作用   总被引:7,自引:0,他引:7  
利用病毒和动物系统对基因表达调控进行了广泛和深入的研究,发现了顺式作用调节序列,鉴定了序列专一的DNA结合蛋白,DNA与蛋白质相互识别、结合及蛋白质与蛋白质相互作用中起作用的蛋白质结构域,并且对调节蛋白基因的克隆和序列进行了分析.基因表达调控领域又由于植物基因调控机制取得的发展而得到了补充,文章着重介绍植物基因中的DNA与蛋白质间的作用;植物调节蛋白基因的分离;这一领域的今后研究方向及展望.  相似文献   

5.
6.
Predictive motifs derived from cytosine methyltransferases.   总被引:36,自引:51,他引:36       下载免费PDF全文
Thirteen bacterial DNA methyltransferases that catalyze the formation of 5-methylcytosine within specific DNA sequences possess related structures. Similar building blocks (motifs), containing invariant positions, can be found in the same order in all thirteen sequences. Five of these blocks are highly conserved while a further five contain weaker similarities. One block, which has the most invariant residues, contains the proline-cysteine dipeptide of the proposed catalytic site. A region in the second half of each sequence is unusually variable both in length and sequence composition. Those methyltransferases that exhibit significant homology in this region share common specificity in DNA recognition. The five highly conserved motifs can be used to discriminate the known 5-methylcytosine forming methyltransferases from all other methyltransferases of known sequence, and from all other identified proteins in the PIR, GenBank and EMBL databases. These five motifs occur in a mammalian methyltransferase responsible for the formation of 5-methylcytosine within CG dinucleotides. By searching the unidentified open reading frames present in the GenBank and EMBL databases, two potential 5-methylcytosine forming methyltransferases have been found.  相似文献   

7.
8.
9.
Y Timsit  D Moras 《The EMBO journal》1994,13(12):2737-2746
Groove-backbone interaction is a natural and biologically relevant mechanism for the specific assembly of B-DNA double helices. Crystal engineering and crystal packing analysis of oligonucleotides of different sizes and sequences reveal that the sequence-dependent self-fitting of B-DNA helices is a dominant constraint for their ordered assembly. It can override the other intermolecular interactions and impose the overall geometry of the packing. Analysis of experimental examples of architectural motifs formed by the geometric combination of self-fitted DNA segments leads to general rules for DNA assembly. Like a directing piece for a supramolecular 'construction set', the double helix imposes a limited number of geometric solutions. These basic architectural constraints could direct, in a codified manner, the formation of higher-order structures. DNA architectural motifs exhibit new structural and electrostatic properties which could have some implications for their molecular recognition by proteins acting on DNA.  相似文献   

10.
The homeodomain is one of the most important eukaryotic DNA-binding motifs and has been identified in over one thousand proteins. Homeodomain proteins play critical roles in diverse biological processes, including cell differentiation and cell pattern formation. The human Pitx2 homeodomain binds several different DNA sequences and is a pivotal component of both the TGF-β and Wnt/β-catenin signaling pathways. As the recognition of specific DNA sequences represents an essential biochemical function of all DNA-binding proteins, we have chosen the Pitx2 homeodomain model to investigate the mechanisms that convey biological specificity in these protein-DNA interactions. Here, we report complete chemical shift assignments of the human Pitx2 homeodomain and the R24H mutation that induces ring dermoid of the cornea syndrome.  相似文献   

11.
Recent studies have shown that restriction endonucleases (REs), which are broadly used in genetic engineering and molecular biology, vary not only in nucleotide sequence of the recognition site, but also in the mechanism of their interaction with DNA. This review focuses on type IIF and IIE REs, which require simultaneous interaction with two nucleotide sequences for efficient DNA cleavage. Crystal structures of these REs and their complexes with DNA, stepwise interactions with DNA, catalytic mechanisms of DNA hydrolysis, and DNA looping are considered. Type IIE REs have provided an example of a new type of DNA–protein recognition: two copies of one recognition sequence interact specifically with two different amino acid sequences and two different structural motifs of one polypeptide chain.  相似文献   

12.
13.
14.
A triplet of adjacent, highly similar GT motifs in the phyA promoter of rice functions to support maximal expression of this gene. We have obtained a recombinant clone that encodes a full-length nuclear protein, designated GT-2, which binds specifically to these target sequences. This novel protein contains acidic, basic and proline- + glutamine-rich regions, as well as two autonomous DNA-binding domains, one NH2-terminal and the other COOH-terminal, that discriminate with high resolution between the three GT motifs. A duplicated sequence of 75 amino acids, present once in each DNA-binding domain, appears likely to mediate DNA target element recognition. Each copy of this duplicated protein sequence is predicted to form three amphipathic alpha-helices separated from each other by two short loops. The absence of sequence similarity to other known proteins suggests that this predicted structural unit, which we term the trihelix motif, might be representative of a new class of DNA-binding proteins.  相似文献   

15.
16.
Cuticular Proteins in Insects and Crustaceans   总被引:1,自引:0,他引:1  
Comparisons between crustacean and insect cuticles are hamperedby the paucity of cuticular protein sequences for the former.Sufficient complete sequences are available for insect cuticularproteins to allow recognition of conserved motifs and relationshipsamong proteins that reflect the type of cuticle from which theyhave been extracted. All five sequences from an arachnid andtwo of 14 from crustaceans have a motif found in the largestgroup of insect cuticular proteins. Numerous insights have beengained from studying insect cuticular proteins and their genes.These insights have been summarized in hopes of encouraginginterest in building on the foundations laid by Dorothy Skinnerwith the exoskeleton of Gecarcinus.  相似文献   

17.
There are general features of chromosome dynamics, such as homologue recognition in early meiosis, which are expected to involve related sequence motifs in non-coding DNA, with a similar distribution in different species. A search for such motifs is presented here. It has been carried out with the CONREPP programme. It has been found that short alternating AT sequences (10-20 bases) have a similar distribution in most eukaryotic organisms, with some exceptions related to unique meiotic features. All other microsatellite and repeat sequences vary significantly in different organisms. It is concluded that the unique structural features and uniform distribution of alternating AT sequences indicate that they may facilitate homologous chromosome pairing in the early preleptotene stage of meiosis. They may also play a role in the compaction of DNA in mitotic chromosomes.  相似文献   

18.
A recent genome-wide bioinformatic analysis indicated that 54% of human genes undergo alternative polyadenylation. Although it is clear that differential selection of poly(A) sites can alter gene expression, resulting in significant biological consequences, the mechanisms that regulate polyadenylation are poorly understood. Here we report that the neuron-specific members of a family of RNA-binding proteins, Hu proteins, known to regulate mRNA stability and translation in the cytoplasm, play an important role in polyadenylation regulation. Hu proteins are homologs of the Drosophila embryonic lethal abnormal visual protein and contain three RNA recognition motifs. Using an in vitro polyadenylation assay with HeLa cell nuclear extract and recombinant Hu proteins, we have shown that Hu proteins selectively block both cleavage and poly(A) addition at sites containing U-rich sequences. Hu proteins have no effect on poly(A) sites that do not contain U-rich sequences or sites in which the U-rich sequences are mutated. All three RNA recognition motifs of Hu proteins are required for this activity. Overexpression of HuR in HeLa cells also blocks polyadenylation at a poly(A) signal that contains U-rich sequences. Hu proteins block the interaction between the polyadenylation cleavage stimulation factor 64-kDa subunit and RNA most likely through direct interaction with poly(A) cleavage stimulation factor 64-kDa subunit and cleavage and polyadenylation specificity factor 160-kDa subunit. These studies identify a novel group of mammalian polyadenylation regulators. Furthermore, they define a previously unknown nuclear function of Hu proteins.  相似文献   

19.
The gene encoding DNA polymerase alpha from Plasmodium falciparum.   总被引:2,自引:1,他引:1       下载免费PDF全文
The gene encoding DNA polymerase alpha from the human malaria parasite Plasmodium falciparum has been sequenced and characterised. The deduced amino acid sequence possesses the seven sequence motifs which characterise eukaryotic replicative DNA polymerases (I-VII) and four of five motifs (A-E) identified in alpha DNA polymerases. The predicted protein also contains sequences which are reminiscent of Plasmodium proteins but absent from other DNA polymerases. These include four blocks of additional amino acids interspersed with the conserved motifs of the DNA polymerases, four asparagine rich sequences and a novel carboxy-terminal extension. Repetitive sequences similar to those found in other malarial proteins are also present. cDNA-directed PCR was used to establish the presence of these features in the approximately 7kb mRNA. The coding sequence contains a single intron. The gene for DNAPol alpha is located on chromosome 4 and is transcribed in both asexual and sexual erythrocytic stages of the parasite.  相似文献   

20.
Protein domains constructed from tandem α-helical repeats have until recently been primarily associated with protein scaffolds or RNA recognition. Recent crystal structures of human mitochondrial termination factor MTERF1 and Bacillus cereus alkylpurine DNA glycosylase AlkD bound to DNA revealed two new superhelical tandem repeat architectures capable of wrapping around the double helix in unique ways. Unlike DNA sequence recognition motifs that rely mainly on major groove read-out, MTERF and ALK motifs locate target sequences and aberrant nucleotides within DNA by resculpting the double-helix through extensive backbone contacts. Comparisons between MTERF and ALK repeats, together with recent advances in ssRNA recognition by Pumilio/FBF (PUF) domains, provide new insights into the fundamental principles of protein-nucleic acid recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号