首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stimulation of galactosyltransferase in liver microsomes by lysolecithin   总被引:5,自引:0,他引:5  
Lysolecithin markedly stimulated membrane-bound UDP-galactose:glycoprotein galactosyltransferase. The parent molecule lecithin, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidic acid, lysophosphatidic acid or glycerophosphorylcholine did not activate the enzyme suggesting that both fatty acyl- and phosphorylcholine groups are required for the enzyme activation. The dose-effect of lysolecithin showed sigmoidal kinetics and the Vmax of the enzyme was increased several-fold by lysolecithin. Saturating amounts of Triton masked the effect of lysolecithin. Pre-incubation with phospholipase A also activated the enzyme. A possible role of membrane lysolecithin is indicated in regulating the enzymes of glycoprotein synthesis.  相似文献   

2.
Microsomal membranes were solubilized by incubation with lysolecithin which caused considerable release of galactosyl- and N-acetylglucosaminyl-transferase into a high-speed supernatant fraction. With a critical concentration of lysolecithin (2.5 mg/10 mg protein in 1 mL microsome suspension), there was a maximal binding of radioactive lysolecithin to the sediment fraction obtained after high-speed centrifugation. Increase of lysolecithin concentration (above 2.5 mg/mL) in the incubation mixture caused a progressive release of the enzymes into the supernatant fraction. Lysolecithin binding to the membrane was greatly inhibited by 1 M NaCl, and high salt concentration also inactivated galactosyltransferase in the sediment, suggesting an electrostatic interaction between lysolecithin and membrane enzyme. In contrast, high NaCl concentration had no inhibitory effect on the enzyme activity in the sediment when the fraction was prepared by treatment with Triton X-100. Lysolecithin-treated microsomal sediment and supernatant galactosyltransferase was inactivated by oleoyllysophosphatidic acid but not by palmitoyllysophosphatidic acid or egg yold lysophosphatidic acid. Triton X-100 treated microsomal fractions were also similarly affected by different species of lysophosphatidic acid. The results suggested a similarity of interactions of lysophosphatidic fatty acyl species with lysolecithin and Triton-treated galactosyltransferase.  相似文献   

3.
4.
5.
6.
The action of cabbage-leaf phospholipase D upon lysolecithin   总被引:6,自引:4,他引:2       下载免费PDF全文
1. The action of the water-soluble phospholipase D from Savoy cabbage leaves upon an aqueous solution of lysolecithin has been studied. 2. Optimum conditions required the presence of Ca(2+) ions and pH5.8. 3. Equivalence was found between the amounts of lysolecithin hydrolysed and free choline released. The reaction was not accompanied by deacylation. 4. As the enzymic degradation proceeded, an opalescence developed, owing to the insolubility of the reaction product in the presence of Ca(2+) ions. 5. Evidence has been obtained indicating the heterogeneity of this reaction product.  相似文献   

7.
A membrane-bound phospholipase A1 purified from Escherichia coli   总被引:30,自引:0,他引:30  
C J Scandella  A Kornberg 《Biochemistry》1971,10(24):4447-4456
  相似文献   

8.
1. Rat liver microsomal preparations incubated in 1% Triton X-100 at 37°C for 1h released about 60% of the membrane-bound UDP-galactose–glycoprotein galactosyltransferase (EC 2.4.1.22) into a high-speed supernatant. The supernatant galactosyltransferase which was solubilized but not purified by this treatment had a higher molecular weight than the serum enzyme as shown by Sephadex G-100 column chromatography. 2. The galactosyltransferase present in the high-speed supernatant was purified 680-fold by an affinity-column-chromatographic technique by using a column of activated Sepharose 4B coupled with α-lactalbumin. The galactosyltransferase ran as a single band on polyacrylamide gels and contained no sialyltransferase, N-acetylglucosaminyltransferase or UDP-galactose pyrophosphatase activities. 3. The purified membrane enzyme had properties similar to serum galactosyltransferase. It had an absolute requirement for Mn2+ that could not be replaced by Ca2+, Mg2+, Zn2+ or Co2+, and was active over a wide pH range (6–8) with a pH optimum of 6.5. The apparent Km for UDP-galactose was 10.8μm. The protein α-lactalbumin modified the enzyme to a lactose synthetase by increasing substrate specificity for glucose in preference to N-acetylglucosamine and fetuin depleted of sialic acid and galactose. 4. The molecular weight of the membrane enzyme was 65000–70000, similar to that of the purified serum enzyme. Amino acid analyses of the two proteins were similar but not identical. 5. Sephadex G-100 column chromatography of the purified membrane enzyme showed a small peak (2–5%) of higher molecular weight than the purified serum enzyme. Inclusion of 1mm-ε-aminohexanoic acid in the isolation procedures increased this peak to as much as 30% of the total enzyme recovered. Increasing the ε-aminohexanoic acid concentration to 100mm resulted in no further increase in this high-molecular-weight fraction.  相似文献   

9.
1. Lysolecithin, prepared by the action of snake-venom phospholipase A on ovolecithin, when incubated with Savoy-cabbage phospholipase D, in the presence of Ca(2+) ions, gave two degradation products (designated A and B) in the form of their calcium salts. 2. These calcium salts were separated quantitatively by solvent fractionation and converted into the corresponding sodium salts. 3. Substance B proved to be a lysophosphatidic acid of conventional structure (1-monoacyl-l-3-glycerophosphoric acid). When the phosphate group was removed by means of prostatic acid phosphomonoesterase, a 1-monoglyceride was formed quantitatively. Alkaline hydrolysis gave the theoretical yield of l-3-glycerophosphate. 4. Substance A, on the other hand, had all the properties expected for a cyclic phosphate of a 1-monoglyceride. It was unaffected by phosphomonoesterase. On alkaline hydrolysis, the acyl group was removed and ring opening of the presumed cyclic phosphate group gave an approximately equimolar mixture of 2- and l-3-glycerophosphates. 5. The structures of substances A and B confirm lysolecithin as 1-monoacyl-l-3-glycerylphosphorylcholine.  相似文献   

10.
S Yedgar  N Reisfeld  D Halle  I Yuli 《Biochemistry》1987,26(12):3395-3401
Medium viscosity is a regulator of very low density lipoprotein production by cultured hepatocytes; their secretion and synthesis are inversely proportional to the extracellular fluid viscosity. The possibility that the mechanism of this extracellular effect on cell function involves modulation of cell membrane component(s) was considered. Along with this assumption, we studied the effect of medium viscosity on the activity of phospholipase A2 (PLA2), an enzyme present in the cell surface membrane, and the activity has been correlated with cellular secretion. We have found that culture medium viscosity inhibits the activity of PLA2 in the plasma membrane of cultured liver cells, concomitantly with the inhibition of lysosomal enzyme and lipoprotein secretion. It was also found that the degradation of liposomal phosphatidylcholine by soluble snake venom PLA2 is inversely proportional to the solvent viscosity. The possibility that the effect of medium viscosity on the enzymatic reaction involves the modulation of dynamic properties of membrane phospholipids was then considered. This hypothesis was examined by monitoring the fluorescence depolarization of fluorophores incorporated into phospholipid vesicles. No significant effect of the solvent viscosity on the phospholipid bilayer was observed. It is proposed that the regulation of cellular secretion by extracellular fluid viscosity involves modulation of the cell membrane PLA2 activity.  相似文献   

11.
12.
Phospholipase A2 was solubilized from rat platelet membrane by 1 M KCl and purified to near homogeneity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and HPLC. The characteristics of the purified membrane-bound enzyme were compared with those of phospholipase A2 released from thrombin-stimulated rat platelets (Horigome, K., Hayakawa, M., Inoue, K., & Nojima, S. (1987) J. Biochem. 101, 625-631). The molecular weights, elution profiles on reversed-phase HPLC, and NH2-terminal sequences were identical for the two enzymes. Other characteristics of the two enzymes, such as specific activity, substrate specificity, pH optimum, Ca2+ requirement, heat lability, and sensitivity to p-bromophenacyl bromide were also indistinguishable. These findings suggest that both enzymes share a common structure.  相似文献   

13.
14.
15.
The goal of the present study is to elucidate the mechanism of quercetin on modulating Naja naja atra phospholipase A2 (PLA2) activities. Sphingomyelin inhibited PLA2 enzymatic activity and membrane-damaging activity against egg yolk phosphatidylcholine (EYPC), while cholesterol and quercetin abrogated the sphingomeyelin inhibitory effect. Quercetin incorporation led to a reduction in PLA2 enzymatic activity and membrane-damaging activity toward EYPC/sphingomyelin/cholesterol vesicles. Both cholesterol and quercetin increased detergent resistance and reduced membrane fluidity of EYPC/sphingomyelin vesicles. Quercetin reduced detergent insolubility but increased ordered lipid packing of EYPC/sphingomyelin/cholesterol vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that quercetin altered the membrane-bound mode of PLA2 differently upon absorption onto the membrane bilayers of different lipid compositions. However, 8-anilinonaphthalene sulphonate-binding assay revealed that quercetin marginally affected the interaction between active site of PLA2 with phospholipid vesicles. Collectively, our data indicate that membrane-inserted quercetin modulates PLA2 interfacial activity and membrane-damaging activity via its effects on membrane structure and membrane-bound mode of PLA2.  相似文献   

16.
17.
Galactomannan biosynthesis in vitro is catalysed by membrane preparations from developing fenugreek seed endosperms. Two enzymes interact: a GDP-mannose dependent (1-->4)-beta-D-mannan synthase and a UDP-galactose dependent (1-->6)-alpha-D-galactosyltransferase. The statistical distribution of galactosyl substituents along the mannan backbone, and the degree of galactose substitution of the primary product of galactomannan biosynthesis appear to be regulated by the specificity of the galactosyltransferase. We now report the detergent solubilisation of the fenugreek galactosyltransferase with retention of activity, the identification on gels of a putative 51 kDa galactosyltransferase protein, and the isolation, cloning and sequencing of the corresponding cDNA. The solubilised galactosyltransferase has an absolute requirement for added acceptor substrates. Beta-(1-->4)-linked D-manno-oligosaccharides with chain lengths greater than or equal to 5 acted as acceptors, as did galactomannans of low to medium galactose-substitution. The putative galactosyltransferase cDNA encodes a 51282 Da protein, with a single transmembrane alpha helix near the N terminus. We have also confirmed the identity of the galactosyltransferase by inserting the cDNA in frame into the genome of the methylotrophic yeast Pichia pastoris under the control of an AOX promoter and the yeast alpha secretion factor and observing the secretion of galactomannan alpha-galactosyltransferase activity. Particularly high activities were observed when a truncated sequence, lacking the membrane-spanning helix, was expressed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号