首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
4-Hydroxynonenal (HNE) accumulates at atherosclerotic lesions, but its role in the progression of atherosclerosis is not clear. Considering the role of matrix metalloproteinases (MMP) in plaque destabilization, we investigated the mechanism by which HNE induces MMP production in vascular smooth muscle cells (VSMC). VSMC stimulated by HNE (1.0 microM) produced enzymatically active MMP-2 with an increased promoter activity, which was abolished by mutation of the NF-kappaB binding site in the promoter region. The increased NF-kappaB activity with subsequent MMP-2 production by HNE was significantly attenuated by transfection with Akt siRNA as well as by pretreatment with the PI3K/Akt inhibitors LY294002 (10 microM) and SH-5 (1.0 microM). The phosphorylation of Akt occurred as early as 5 min in VSMC exposed to HNE and was markedly attenuated by inhibition of mitochondrial reactive oxygen species (ROS). Furthermore, the impact of mitochondrial ROS on HNE-induced Akt phosphorylation with subsequent MMP-2 production was also demonstrated in mitochondrial function-deficient VSMC, as well as in cells transfected with manganese superoxide dismutase. Taken together, these results suggest that HNE enhances MMP-2 production in VSMC via mitochondrial ROS-mediated activation of the Akt/NF-kappaB signaling pathways.  相似文献   

2.
High glucose(HG)-induced oxidative stress and apoptosis in renal tubular epithelial cells play an important role in the pathogenesis of diabetic nephropathy. Pyrroloquinoline quinine (PQQ), a new B vitamin, has been demonstrated to be important in antioxidant and anti-apoptotic effects. However, its effect on HK-2?cells and the potential mechanism are rarely investigated. In this study, we investigated that PPQ had protective effects against HG-induced oxidative stress damage and apoptosis in vitro model of diabetic nephropathy. PPQ at 10, 100, 500, 1000 and 10000?nM could protect HK-2?cell from HG-induced inhibition. The protective effects of PQQ were associated with increasing the level of antioxidants(SOD2, CAT), inhibition of reactive oxygen species(ROS) production, and dependent modulation of Bcl-2 family proteins. PPQ significantly upregulated the protein and mRNA expression of Sirtuin3(Sirt3) in HG-induced HK-2?cells. PPQ also reduced apoptosis in HG-induced HK-2?cells by the PI3K/Akt/FoxO3a signal pathway. As down-regulated sirt3 or inhibitory the activity of PI3K/Akt/FoxO3a pathway, the protective effects of PPQ were weakened. In conclusion, our data suggest that PPQ achieves the protective effects through PI3K/Akt/FoxO3a pathway and dependent modulation of Sirt3.  相似文献   

3.
Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs) and up-regulated in atherosclerotic lesion by various stimuli, such as oxidized low-density lipoprotein (oxLDL). Calcium-sensing receptor (CaSR) is also expressed in VSMCs, but it remains unclear whether CaSR is associated with overproduction of MMP-2 in VSMCs. In this study, the expression of MMP-2 was detected by real-time PCR and Western blot analysis, and the gelatinolytic activity of MMP-2 was measured using gelatin zymography. Our results showed that oxLDL enhanced MMP-2 expression and activity in rat aortic VSMCs in a time- and dose-dependent manner. In addition, CaSR expression was up-regulated by oxLDL. Manipulating CaSR function in these cells by NPS2390 (an antagonist of CaSR) or GdCl(3) (an agonist of CaSR) affected the oxLDL-induced MMP-2 production. In VSMCs, oxLDL stimulated the rapid activation of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, as determined by Western blot analysis. Phosphorylation of Akt and MMP-2 production stimulated by oxLDL were attenuated by LY294002 (a specific inhibitor of PI3K). Activation of Akt was suppressed by NPS2390 but enhanced by GdCl(3). In contrast, oxLDL had no stimulatory effect on the phosphorylation of JNK, and pretreatment with SP600125 (an inhibitor of JNK) produced no significant effect on oxLDL-induced MMP-2 production. These results suggest that CaSR mediates oxLDL-induced MMP-2 production in VSMCs via PI3K/Akt signal pathway.  相似文献   

4.

Background

Diabetes is an independent risk factor of osteoarthritis (OA). Angiogenesis is essential for the progression of OA. Here, we investigated the intracellular signaling pathways involved in high glucose (HG)-induced vascular endothelial growth factor (VEGF) expression in human synovial fibroblast cells.

Methods

HG-mediated VEGF expression was assessed with qPCR and ELISA. The mechanisms of action of HG in different signaling pathways were studied using Western blotting. Knockdown of proteins was achieved by transfection with siRNA. Chromatin immunoprecipitation assays were used to study in vivo binding of c-Jun to the VEGF promoter.

Results

Stimulation of OA synovial fibroblasts (OASF) with HG induced concentration- and time-dependent increases in VEGF expression. Treatment of OASF with HG increased reactive oxygen species (ROS) generation. Pretreatment with NADPH oxidase inhibitor (APO or DPI), ROS scavenger (NAC), PI3K inhibitor (Ly294002 or wortmannin), Akt inhibitor, or AP-1 inhibitor (curcumin or tanshinone IIA) blocked the HG-induced VEGF production. HG also increased PI3K and Akt activation. Treatment of OASF with HG increased the accumulation of phosphorylated c-Jun in the nucleus, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the VEGF promoter.

Conclusions

Our results suggest that the HG increases VEGF expression in human synovial fibroblasts via the ROS, PI3K, Akt, c-Jun and AP-1 signaling pathway.

General significance

We link high glucose on VEGF expression in osteoarthritis.  相似文献   

5.
6.
7.
Diabetic peripheral neuropathy (DPN) is one of the most common and troublesome complications of diabetes mellitus. It has been demonstrated that nerve growth factor (NGF) exerts a pivotal role in the regulation of neuronal growth and the promotion of DPN recovery. However, the exact molecular mechanisms are not well understood. Recent studies have indicated that as a novel therapeutic target, endoplasmic reticulum (ER) stress participates in the onset and progression of DPN. In the present study, it has been demonstrated that NGF prevents the sciatic nerve from degeneration and demyelination in DPN rats. Thus, RSC 96 cells, which retain the characteristic features of Schwann cells (SCs), were cultured in medium containing 30 mM glucose (high glucose, HG) to mimic SCs in DPN mice. The 50-ng/ml dose of NGF was identified to be the optimal concentration for treating an excessive ER stress level under HG conditions for 24 h. We found that NGF treatment significantly inhibits HG-induced ER stress and subsequently suppresses ER-related apoptosis. Further, NGF administration also activates the upstream signaling pathway of ER stress, PI3K/Akt/GSK3β signaling and ERK1/2 signaling. Co-treatment with the PI3K inhibitor LY294002 or ERK1/2 inhibitor U0126 significantly reverses the protective role of NGF on HG-induced excessive ER stress and subsequent apoptosis. These observations suggest that the neuroprotective role of NGF in DPN is mediated by the inhibition of excessive ER stress via the activation of the PI3K/Akt/GSK3β and ERK1/2 signaling pathways.  相似文献   

8.
Hsieh HL  Yen MH  Jou MJ  Yang CM 《Cellular signalling》2004,16(10):1163-1176
Bradykinin (BK), an inflammatory mediator, has been shown to increase the expression of proteins such as matrix metalloproteinases (MMPs) on brain cells and contributes to the pathophysiology of inflammatory responses. However, the mechanisms regulating MMP-9 expression by BK in rat brain astrocytes-1 (RBA-1) remain unclear. Here we report that the mitogen-activated protein kinase (MAPK) and NF-kappaB pathways participate in the induction of MMP-9 expression induced by BK in RBA cells. Zymographic, Western blotting, and RT-PCR analyses showed that BK increased expression of MMP-9 mRNA and protein in a time- and concentration-dependent manner. BK-induced MMP-9 mRNA and protein expression was inhibited by MEK1/2 inhibitor PD98059, PI3-K inhibitor LY294002, and NF-kappaB inhibitor helenalin. In accordance with these findings, BK-induced phosphorylation of p42/p44 MAPK and Akt and activation of NF-kappaB was attenuated by prior treatment with PD98059, LY294002, and helenalin, respectively. The effects of BK on MMP-9 expression and p42/p44 MAPK and Akt phosphorylation were inhibited by B(2) receptor antagonist Hoe 140, indicating the involvement of B(2) receptors revealed by [(3)H]-BK binding assay. Furthermore, BK-stimulated translocation of NF-kappaB into the nucleus was revealed by Western blotting and immnofluorescence staining and blocked by Hoe140, PD98059, LY294002, and helenalin. Taken together, these results suggest that in RBA cells, activation of p42/p44 MAPK and Akt cascades mediated through NF-kappaB pathway are essential for BK-induced MMP-9 gene expression. This study may provide insights into the regulation of MMP-9 production in CNS, which may occur in vivo in pathological situations such as CNS inflammation and brain astrocytoma.  相似文献   

9.
Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.  相似文献   

10.
11.
12.
13.
Hypertension can increase mechanical stretch on the vessel wall, an important stimulus that induces collagen remodeling. Prolyl-4-hydroxylaseα1 (P4Hα1) and matrix metalloproteinases (MMPs) are essential for collagen synthesis and degradation. However, the effect of mechanical strain and collagen synthesis remains largely unknown. This study aimed to identify the effect of stretch on MMPs and P4Hα1 and the involved signaling pathways. Human aortic smooth muscle cells (HASMCs) were stimulated with mechanical stretch (0, 10% and 18% strain), and production of P4Hα1 as well as production and gelatinolytic activity of MMP-2 was force-dependently increased. Mechanical stretch at 18% also increased the expression of type I and III collagen and the phosphorylation of Akt, p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). MMP-2 production and activity enhanced by 18% stretch were inhibited by the PI3K/Akt inhibitor LY294002. Blockade of p38 MAPK or JNK inhibited the promoting effect of stretch on P4Hα1. The in vivo model of aortic banding showed increased protein levels of MMP-2, P4Hα1 and collagen I and III in the aorta. Thus, mechanical stretch increased MMP-2 and P4Hα1 expression in HASMCs via AKT-P38 MAPK-JNK signaling, thereby inducing vascular remodeling.  相似文献   

14.
15.
Recent work has suggested a role for the serine/threonine kinase Akt and IkappaB kinases (IKKs) in nuclear factor (NF)-kappaB activation. In this study, the involvement of these components in NF-kappaB activation through a G protein-coupled pathway was examined using transfected HeLa cells that express the B2-type bradykinin (BK) receptor. The function of IKK2, and to a lesser extent, IKK1, was suggested by BK-induced activation of their kinase activities and by the ability of their dominant negative mutants to inhibit BK-induced NF-kappaB activation. BK-induced NF-kappaB activation and IKK2 activity were markedly inhibited by RGS3T, a regulator of G protein signaling that inhibits Galpha(q), and by two Gbetagamma scavengers. Co-expression of Galpha(q) potentiated BK-induced NF-kappaB activation, whereas co-expression of either an activated Galpha(q)(Q209L) or Gbeta(1)gamma(2) induced IKK2 activity and NF-kappaB activation without BK stimulation. BK-induced NF-kappaB activation was partially blocked by LY294002 and by a dominant negative mutant of phosphoinositide 3-kinase (PI3K), suggesting that PI3K is a downstream effector of Galpha(q) and Gbeta(1)gamma(2) for NF-kappaB activation. Furthermore, BK could activate the PI3K downstream kinase Akt, whereas a catalytically inactive mutant of Akt inhibited BK-induced NF-kappaB activation. Taken together, these findings suggest that BK utilizes a signaling pathway that involves Galpha(q), Gbeta(1)gamma(2), PI3K, Akt, and IKK for NF-kappaB activation.  相似文献   

16.
Bone morphogenetic protein-2 (BMP-2), a member of transforming growth factor-beta superfamily, plays a crucial role in migration and metastasis of human cancer cells. Integrins are the major adhesive molecules in mammalian cells. Here we found that BMP-2 directed the migration and increased cell surface and mRNA expression of beta1 integrin in human chondrosarcoma cancer cells (JJ012). Pretreated of JJ012 cells with phosphatidylinositol 3-kinase inhibitor (PI3K; Ly294002) or Akt inhibitor inhibited the BMP-2-mediated migration and integrin expression. BMP-2 increased the phosphorylation of p85 subunit of PI3K and serine 473 of Akt. In addition, NF-kappaB inhibitor (PDTC) or IkappaB protease inhibitor (TPCK) also inhibited BMP-2-mediated cells migration and integrin upregulation. Stimulation of JJ012 cells with BMP-2 induced IkappaB kinase (IKKalpha/beta) phosphorylation, IkappaB phosphorylation, p65 Ser(536) phosphorylation, and kappaB-luciferase activity. Furthermore, the BMP-2-mediated increasing of IKKalpha/beta phosphorylation, IkappaB phosphorylation, and p65 Ser(536) phosphorylation were inhibited by Ly294002 and Akt inhibitor. Co-transfection with p85 and Akt mutants also reduced the BMP-2-induced kappaB-luciferase activity. Taken together, these results suggest that the BMP-2 acts through PI3K/Akt, which in turn activates IKKalpha/beta and NF-kappaB, resulting in the activations of beta1 integrin and contributing the migration of human chondrosarcoma cells.  相似文献   

17.
Diabetic retinopathy (DR) is one of the most prominent microvascular complications of diabetes, which remains the leading cause of legal blindness in the world. Arctiin, a bioactive compound from Arctium lappa L., has been reported to have antidiabetic activity. In this study, we investigated the effect of arctiin on a human retinal capillary endothelial cell (HRCEC) line and how arctiin inhibits cell proliferation in high glucose (HG)-induced HRCECs. Results showed that arctiin decreased HG-induced HRCECs proliferation in a dose-dependent manner by inducing cell cycle arrest at the G0/G1 phase. Tube formation assay and immunofluorescence staining indicated that arctiin abrogated tube formation induced by HG-induced HRCECs in a dose-dependent manner via down-regulation of VEGF expression. Mechanistic study indicated that perturbation of the ROCK1/PTEN/PI3K/Akt signalling pathway plays a vital role in the arctiin-mediated anti-proliferative effect. Furthermore, pre-incubation of HRCECs with Y-27632 attenuated arctiin-induced cell cycle arrest, cell proliferation and tube formation inhibition. Y-27632 also reversed the activation of PTEN, the inactivation/dephosphorylation of PI3K/Akt and down-regulation of VEGF. Taken together, the results demonstrated that arctiin inhibits the proliferation of HG-induced HRCECs through the activation of ROCK1 and PTEN and inactivation of PI3K and Akt, resulting in down-regulation of VEGF, which inhibits endothelial cell proliferation.  相似文献   

18.
Secretory phospholipase A(2) (sPLA(2)), abundantly expressed in various cells including fibroblasts, is able to promote proliferation and migration. Degradation of collagenous extracellular matrix by matrix metalloproteinase (MMP) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, tumor invasion, and metastasis. Here we show that group IB PLA(2) increased pro-MMP-2 activation in NIH3T3 fibroblasts. MMP-2 activity was stimulated by group IB PLA(2) in a dose- and time-dependent manner. Consistent with MMP-2 activation, sPLA(2) decreased expression of type IV collagen. These effects are due to the reduction of tissue inhibitor of metalloproteinase-2 (TIMP-2) and the activation of the membrane type1-MMP (MT1-MMP). The decrease of TIMP-2 levels in conditioned media and the increase of MT1-MMP levels in plasma membrane were observed. In addition, treatment of cells with decanoyl Arg-Val-Lys-Arg-chloromethyl ketone, an inhibitor of pro-MT1-MMP, suppressed sPLA(2)-mediated MMP-2 activation, whereas treatment with bafilomycin A1, an inhibitor of H(+)-ATPase, sustained MMP-2 activation by sPLA(2). The involvement of phosphatidylinositol 3-kinase (PI3K) and Akt in the regulation of MMP-2 activity was further suggested by the findings that PI3K and Akt were phosphorylated by sPLA(2). Expression of p85alpha and Akt mutants, or pretreatment of cells with LY294002, a PI3K inhibitor, attenuated sPLA(2)-induced MMP-2 activation and migration. Taken together, these results suggest that sPLA(2) increases the pro-MMP-2 activation and migration of fibroblasts via the PI3K and Akt-dependent pathway. Because MMP-2 is an important factor directly involved in the control of cell migration and the turnover of extracellular matrix, our study may provide a mechanism for sPLA(2)-promoted fibroblasts migration.  相似文献   

19.
1,25-dihydroxyvitamin D(3) (VD(3)) induces differentiation in a number of leukemia cell lines and under various conditions is able to either stimulate or inhibit nuclear factor kappa B (NF-kappaB) activity. Here we report a time-dependent biphasic regulation of NF-kappaB in VD(3)-treated HL-60 leukemia cells. After VD(3) treatment there was an early approximately 4 h suppression and a late 8-72 h prolonged reactivation of NF-kappaB. The reactivation of NF-kappaB was concomitant with increased IKK activities, IKK-mediated IkappaBalpha phosphorylation, p65 phosphorylation at residues S276 and S536, p65 nuclear translocation and p65 recruitment to the NF-kappaB/vitamin D responsive element promoters. In parallel with NF-kappaB stimulation, there was an up-regulation of NF-kappaB controlled inflammatory and anti-apoptotic genes such as TNFalpha, IL-1beta and Bcl-xL. VD(3)-triggered reactivation of NF-kappaB was associated with PI3K/Akt phosphorylation. PI3K/Akt antagonists suppressed VD(3)-stimulated IkappaBalpha phosphorylation as well as NF-kappaB-controlled gene expression. The early approximately 4 h VD(3)-mediated NF-kappaB suppression coincided with a prolonged increase of IkappaBalpha protein which require de novo protein synthesis, lasted for as least 72 h and was insensitive to MAPK, IKK or PI3K/Akt inhibitors. Our data suggest a novel biphasic regulation of NF-kappaB in VD(3)-treated leukemia cells and our results may have provided the first molecular explanation for the contradictory observations reported on VD(3)-mediated immune-regulation.  相似文献   

20.
The induction of inducible NO synthase (iNOS) by group IIA phospholipase A(2) (PLA(2)) involves the stimulation of a novel signaling cascade. In this study, we demonstrate that group IIA PLA(2) up-regulates the expression of iNOS through a novel pathway that includes M-type secretory PLA(2) receptor (sPLA(2)R), phosphatidylinositol 3-kinase (PI3K), and Akt. Group IIA PLA(2) stimulated iNOS expression and promoted nitrite production in a dose- and time-dependent manner in Raw264.7 cells. Upon treating with group IIA PLA(2), Akt is phosphorylated in a PI3K-dependent manner. Pretreatment with LY294002, a PI3K inhibitor, strongly suppressed group IIA PLA(2)-induced iNOS expression and PI3K/Akt activation. The promoter activity of iNOS was stimulated by group IIA PLA(2), and this was suppressed by LY294002. Transfection with Akt cDNA resulted in Akt protein overexpression in Raw264.7 cells and effectively enhanced the group IIA PLA(2)-induced reporter activity of the iNOS promoter. M-type sPLA(2)R was highly expressed in Raw264.7 cells. Overexpression of M-type sPLA(2)R enhanced group IIA PLA(2)-induced promoter activity and iNOS protein expression, and these effects were abolished by LY294002. However, site-directed mutation in residue responsible for PLA(2) catalytic activity markedly reduced their ability to production of nitrites and expression of iNOS. These results suggest that group IIA PLA(2) induces nitrite production by involving of M-type sPLA(2)R, which then mediates signal transduction events that lead to PI3K/Akt activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号