首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Import of proteins containing a classical nuclear localization signal (NLS) into the nucleus is mediated by importin alpha and importin beta. Srp1p, the Saccharomyces cerevisiae homologue of importin alpha, returns from the nucleus in a complex with its export factor Cse1p and with Gsp1p (yeast Ran) in its GTP-bound state. We studied the role of the nucleoporin Nup2p in the transport cycle of Srp1p. Cells lacking NUP2 show a specific defect in both NLS import and Srp1p export, indicating that Nup2p is required for efficient bidirectional transport of Srp1p across the nuclear pore complex (NPC). Nup2p is located at the nuclear side of the central gated channel of the NPC and provides a binding site for Srp1p via its amino-terminal domain. We show that Nup2p effectively releases the NLS protein from importin alpha-importin and beta and strongly binds to the importin heterodimer via Srp1p. Kap95p (importin beta) is released from this complex by a direct interaction with Gsp1p-GTP. These data suggest that besides Gsp1p, which disassembles the NLS-importin alpha-importin beta complex upon binding to Kap95p in the nucleus, Nup2p can also dissociate the import complex by binding to Srp1p. We also show data indicating that Nup1p, a relative of Nup2p, plays a similar role in termination of NLS import. Cse1p and Gsp1p-GTP release Srp1p from Nup2p, which suggests that the Srp1p export complex can be formed directly at the NPC. The changed distribution of Cse1p at the NPC in nup2 mutants also supports a role for Nup2p in Srp1p export from the nucleus.  相似文献   

2.
The importin alpha.beta heterodimer mediates nuclear import of proteins containing classical nuclear localization signals. After carrying its cargo into the nucleus, the importin dimer dissociates, and Srp1p (the yeast importin alpha subunit) is recycled to the cytoplasm in a complex with Cse1p and RanGTP. Nup2p is a yeast FXFG nucleoporin that contains a Ran-binding domain. We find that export of Srp1p from the nucleus is impaired in Deltanup2 mutants. Also, Srp1p fusion proteins accumulate at the nuclear rim in wild-type cells but accumulate in the nuclear interior in Deltanup2 cells. A deletion of NUP2 shows genetic interactions with mutants in SRP1 and PRP20, which encodes the Ran nucleotide exchange factor. Srp1p binds directly to an N-terminal domain of Nup2p. This region of Nup2p is sufficient to allow accumulation of an Srp1p fusion protein at the nuclear rim, but the C-terminal Ran-binding domain of Nup2p is required for efficient Srp1p export. Formation of the Srp1p.Cse1p. RanGTP export complex releases Srp1p from its binding site in Nup2p. We propose that Nup2p may act as a scaffold that facilitates formation of the Srp1p export complex.  相似文献   

3.
A 97-kD component of nuclear pore-targeting complex (the β-subunit of nuclear pore–targeting complex [PTAC]/importin/karyopherin) mediates the import of nuclear localization signal (NLS)-containing proteins by anchoring the NLS receptor protein (the α-subunit of PTAC/importin/karyopherin) to the nuclear pore complex (NPC). The import requires a small GTPase Ran, which interacts directly with the β-subunit. The present study describes an examination of the behavior of the β-subunit in living cells and in digitonin-permeabilized cells. In living cells, cytoplasmically injected β-subunit rapidly migrates into the nucleus. The use of deletion mutants reveals that nuclear migration of the β-subunit requires neither Ran- nor α-subunit–binding but only the NPC-binding domain of this molecule, which is also involved in NLS-mediated import. Furthermore, unlike NLS-mediated import, a dominant-negative Ran, defective in GTP-hydrolysis, did not inhibit nuclear migration of the β-subunit. In the digitonin-permeabilized cell-free import assay, the β-subunit transits rapidly through the NPC into the nucleus in a saturating manner in the absence of exogenous addition of soluble factors. These results show that the β-subunit undergoes translocation at the NPC in a Ran-unassisted manner when it does not carry α-subunit/NLS substrate. Therefore, a requirement for Ran arises only when the β-subunit undergoes a translocation reaction together with the α-subunit/NLS substrate. The results provide an insight to the yet unsolved question regarding the mechanism by which proteins are directionally transported through the NPC, and the role of Ran in this process.  相似文献   

4.
The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel.  相似文献   

5.
The nuclear envelope of higher eukaryotic cells reforms at the exit from mitosis, in concert with the assembly of nuclear pore complexes (NPCs). The first step in postmitotic NPC assembly involves the “seeding” of chromatin with ELYS and the Nup107-160 complex. Subsequent steps in the assembly process are poorly understood and different mechanistic models have been proposed to explain the formation of the full supramolecular structure. Here, we show that the initial step of chromatin seeding is negatively regulated by importin β. Direct imaging of the chromatin attachment sites reveals single sites situated predominantly on the highest substructures of chromatin surface and lacking any sign of annular structures or oligomerized pre-NPCs. Surprisingly, the inhibition by importin β is only partially reversed by RanGTP. Importin β forms a high-molecular-weight complex with both ELYS and the Nup107-160 complex in cytosol. We suggest that initiation sites for NPC assembly contain single copies of chromatin-bound ELYS/Nup107-160 and that the lateral oligomerization of these subunits depends on the recruitment of membrane components. We predict that additional regulators, besides importin β and Ran, may be involved in coordinating the initial seeding of chromatin with subsequent steps in the NPC assembly pathway.  相似文献   

6.
Nuclear protein import requires a nuclear localization signal (NLS) receptor and at least three other cytoplasmic factors. The α subunit of the NLS receptor, Rag cohort 1 (Rch1), enters the nucleus, probably in a complex with the β subunit of the receptor, as well as other import factors and the import substrate. To learn more about which factors and/or events end the import reaction and how the import factors return to the cytoplasm, we have studied nucleocytoplasmic shuttling of Rch1 in vivo. Recombinant Rch1 microinjected into Vero or tsBN2 cells was found primarily in the cytoplasm. Rch1 injected into the nucleus was rapidly exported in a temperature-dependent manner. In contrast, a mutant of Rch1 lacking the first 243 residues accumulated in the nuclei of Vero cells after cytoplasmic injection. After nuclear injection, the truncated Rch1 was retained in the nucleus, but either Rch1 residues 207–217 or a heterologous nuclear export signal, but not a mutant form of residues 207–217, restored nuclear export. Loss of the nuclear transport factor RCC1 (regulator of chromosome condensation) at the nonpermissive temperature in the thermosensitive mutant cell line tsBN2 caused nuclear accumulation of wild-type Rch1 injected into the cytoplasm. However, free Rch1 injected into nuclei of tsBN2 cells at the nonpermissive temperature was exported. These results suggested that RCC1 acts at an earlier step in Rch1 recycling, possibly the disassembly of an import complex that contains Rch1 and the import substrate. Consistent with this possibility, incubation of purified RanGTP and RCC1 with NLS receptor and import substrate prevented assembly of receptor/substrate complexes or stimulated their disassembly.  相似文献   

7.
A major question in nuclear import concerns the identity of the nucleoporin(s) that interact with the nuclear localization sequences (NLS) receptor and its cargo as they traverse the nuclear pore. Ligand blotting and solution binding studies of isolated proteins have attempted to gain clues to the identities of these nucleoporins, but the studies have from necessity probed binding events far from an in vivo context. Here we have asked what binding events occur in the more physiological context of a Xenopus egg extract, which contains nuclear pore subcomplexes in an assembly competent state. We have then assessed our conclusions in the context of assembled nuclear pores themselves. We have used immunoprecipitation to identify physiologically relevant complexes of nucleoporins and importin subunits. In parallel, we have demonstrated that it is possible to obtain immunofluorescence localization of nucleoporins to subregions of the nuclear pore and its associated structures. By immunoprecipitation, we find the nucleoporin Nup153 and the pore-associated filament protein Tpr, previously shown to reside at distinct sites on the intranuclear side of assembled pores, are each in stable subcomplexes with importin α and β in Xenopus egg extracts. Importin subunits are not in stable complexes with nucleoporins Nup62, Nup93, Nup98, or Nup214/CAN, either in egg extracts or in extracts of assembled nuclear pores. In characterizing the Nup153 complex, we find that Nup153 can bind to a complete import complex containing importin α, β, and an NLS substrate, consistent with an involvement of this nucleoporin in a terminal step of nuclear import. Importin β binds directly to Nup153 and in vitro can do so at multiple sites in the Nup153 FXFG repeat region. Tpr, which has no FXFG repeats, binds to importin β and to importin α/β heterodimers, but only to those that do not carry an NLS substrate. That the complex of Tpr with importin β is fundamentally different from that of Nup153 is additionally demonstrated by the finding that recombinant β or β45–462 fragment freely exchanges with the endogenous importin β/Nup153 complex, but cannot displace endogenous importin β from a Tpr complex. However, the GTP analogue GMP-PNP is able to disassemble both Nup153– and Tpr–importin β complexes. Importantly, analysis of extracts of isolated nuclei indicates that Nup153– and Tpr–importin β complexes exist in assembled nuclear pores. Thus, Nup153 and Tpr are major physiological binding sites for importin β. Models for the roles of these interactions are discussed.  相似文献   

8.

Background  

Classical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin α and importin β. NLS cargo is recognized by importin α, which is bound by importin β. Importin β mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin β triggers disassembly of the complex. To date, six importin α family members, encoded by separate genes, have been described in humans.  相似文献   

9.
The importin α/β transport machinery mediates the nuclear import of cargo proteins that bear a classical nuclear localization sequence (cNLS). These cargo proteins are linked to the major nuclear protein import factor, importin‐β, by the importin‐α adapter, after which cargo/carrier complexes enter the nucleus through nuclear pores. In the nucleus, cargo is released by the action of RanGTP and the nuclear pore protein Nup2, after which the importins are recycled to the cytoplasm for further transport cycles. The nuclear export of importin‐α is mediated by Cse1/CAS. Here, we exploit structures of functionally important complexes to identify residues that are critical for these interactions and provide insight into how cycles of protein import and recycling of importin‐α occur in vivo using a Saccharomyces cerevisiae model. We examine how these molecular interactions impact protein localization, cargo import, function and complex formation. We show that reversing the charge of key residues in importin‐α (Arg44) or Cse1 (Asp220) results in loss of function of the respective proteins and impairs complex formation both in vitro and in vivo. To extend these results, we show that basic residues in the Nup2 N‐terminus are required for both Nup2 interaction with importin‐α and Nup2 function. These results provide a more comprehensive mechanistic model of how Cse1, RanGTP and Nup2 function in concert to mediate cNLS‐cargo release in the nucleus.  相似文献   

10.
Proteins to be transported into the nucleus are recognized by members of the importin-karyopherin nuclear transport receptor family. After docking at the nuclear pore complex (NPC), the cargo-receptor complex moves through the aqueous pore channel. Once cargo is released, the importin then moves back through the channel for new rounds of transport. Thus, importin and exportin, another member of this family involved in export, are thought to continuously shuttle between the nuclear interior and the cytoplasm. In order to understand how nuclear transporters traverse the NPC, we constructed functional protein fusions between several members of the yeast importin family, including Pse1p, Sxm1p, Xpo1p, and Kap95p, and the green fluorescent protein (GFP). Complexes containing nuclear transporters were isolated by using highly specific anti-GFP antibodies. Pse1-GFP was studied in the most detail. Pse1-GFP is in a complex with importin-α and -β (Srp1p and Kap95p in yeast cells) that is sensitive to the nucleotide-bound state of the Ran GTPase. In addition, Pse1p associates with the nucleoporins Nsp1p, Nup159p, and Nup116p, while Sxm1p, Xpo1p, and Kap95p show different patterns of interaction with nucleoporins. Association of Pse1p with nucleoporins also depends on the nucleotide-bound state of Ran; when Ran is in the GTP-bound state, the nucleoporin association is lost. A mutant form of Pse1p that does not bind Ran also fails to interact with nucleoporins. These data indicate that transport receptors such as Pse1p interact in a Ran-dependent manner with certain nucleoporins. These nucleoporins may represent major docking sites for Pse1p as it moves in or out of the nucleus via the NPC.  相似文献   

11.
The hepatitis C virus (HCV) is a positive strand RNA virus of the Flavivirus family that replicates in the cytoplasm of infected hepatocytes. Previously, several nuclear localization signals (NLS) and nuclear export signals (NES) have been identified in HCV proteins, however, there is little evidence that these proteins travel into the nucleus during infection. We have recently shown that nuclear pore complex (NPC) proteins (termed nucleoporins or Nups) are present in the membranous web and are required during HCV infection. In this study, we identify a total of 11 NLS and NES sequences in various HCV proteins. We show direct interactions between HCV proteins and importin α5 (IPOA5/kapα1), importin β3 (IPO5/kap β3), and exportin 1 (XPO1/CRM1) both in-vitro and in cell culture. These interactions can be disrupted using peptides containing the specific NLS or NES sequences of HCV proteins. Moreover, using a synchronized infection system, we show that these peptides inhibit HCV infection during distinct phases of the HCV life cycle. The inhibitory effects of these peptides place them in two groups. The first group binds IPOA5 and inhibits infection during the replication stage of HCV life cycle. The second group binds IPO5 and is active during both early replication and early assembly. This work delineates the entire life cycle of HCV and the active involvement of NLS sequences during HCV replication and assembly. Given the abundance of NLS sequences within HCV proteins, our previous finding that Nups play a role in HCV infection, and the relocation of the NLS double-GFP reporter in HCV infected cells, this work supports our previous hypothesis that NPC-like structures and nuclear transport factors function in the membranous web to create an environment conducive to viral replication.  相似文献   

12.
Ciufo LF  Brown JD 《Current biology : CB》2000,10(20):1256-1264
BACKGROUND: The movement of macromolecules through the nuclear pores requires energy and transport receptors that bind both cargo and nuclear pores. Different molecules/complexes often require different transport receptors. The signal recognition particle (SRP) is a conserved cytosolic ribonucleoprotein that targets proteins to the endoplasmic reticulum. Previous studies have shown that the export of SRP RNA from the nucleus requires trans-acting factors and that SRP may be at least partly assembled in the nucleus, but little else is known about how it is assembled and exported into the cytoplasm. RESULTS: Of the six proteins that constitute the yeast SRP, we found that all except Srp54p were imported into the nucleus. Four of these had nucleolar pools. The same four proteins are required for stability of the yeast SRP RNA scR1, suggesting that they assemble with the RNA in the nucleus to form a central core SRP. This core SRP was a competent export substrate. Of the remaining components, Sec65p entered the nucleus and was assembled onto the core particle there, whereas Srp54p was solely cytoplasmic. The export of SRP from the nucleus required the transport receptor Xpo1p/Crm1p and Yrb2p, both components of the pathway that exports leucine-rich nuclear export signal (NES)-containing proteins from the nucleus. CONCLUSIONS: The SRP is assembled in the nucleus into a complex lacking only Srp54p. It is then exported through the NES pathway into the cytoplasm where Srp54p binds to it. This transport route for a ribonucleoprotein complex is so far unique in yeast.  相似文献   

13.
Cse1 mediates nuclear export of importin alpha, the nuclear localization signal (NLS) import adaptor. We report the 3.1 A resolution structure of cargo-free Cse1, representing this HEAT repeat protein in its cytosolic state. Cse1 is compact, consisting of N- and C-terminal arches that interact to form a ring. Comparison with the structure of cargo-bound Cse1 shows a major conformational change leading to opening of the structure upon cargo binding. The largest structural changes occur within a hinge region centered at HEAT repeat 8. This repeat contains a conserved insertion that connects the RanGTP and importin alpha contact sites and that is essential for binding. In the cargo-free state, the RanGTP binding sites are occluded and the importin alpha sites are distorted. Mutations that destabilize the N- to C-terminal interaction uncouple importin alpha and Ran binding, suggesting that the closed conformation prevents association with importin alpha.  相似文献   

14.
We previously reported that the nuclear import of substrates containing SV40 T antigen nuclear localization signal (NLS) was suppressed in a temperature-sensitive RCC1 mutant cell line, tsBN2, at nonpermissive temperature. Moreover, it was shown that import into wild type BHK21 cell-derived nuclei gradually decreased in heterokaryons between the tsBN2 and BHK21 cells, although the BHK21 nuclei retained wild type RCC1 and should contain RanGTP (Tachibana et al., 1994). In this study, it was found that in the heterokaryons cultured at non-permissive temperature, endogenous importin alpha was not detected immunocytochemically in the cytoplasm or BHK21 nuclei but only in the tsBN2 nuclei, suggesting that importin alpha cannot be exported from the RCC1-depleted nuclei. In fact, importin alpha microinjected into the nucleus of tsBN2 cells at non-permissive temperature remained in the nucleus. These results strongly support the hypothesis that the recycling of importin alpha from the nucleus requires nuclear RanGTP. Moreover, it was found that cytoplasmic injection of importin alpha restored the import of SV40 T-NLS substrates in the BHK21 nuclei but not the tsBN2 nuclei in the heterokaryons. This indicates that the decrease of importin alpha from the cytoplasm in the heterokaryons leads to a suppression of the efficiency of nuclear import of the T-NLS substrate and provides support for the view that nuclear RanGTP is essential for the nuclear entry of the substrates.  相似文献   

15.
The nuclear import of proteins bearing a basic nuclear localization signal (NLS) is dependent on karyopherin α/importin α, which acts as the NLS receptor, and karyopherin β1/importin β, which binds karyopherin α and mediates the nuclear import of the resultant ternary complex. Recently, a second nuclear import pathway that allows the rapid reentry into the nucleus of proteins that participate in the nuclear export of mature mRNAs has been identified. In mammalian cells, a single NLS specific for this alternate pathway, the M9 NLS of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), has been described. The M9 NLS binds a transport factor related to karyopherin β1, termed karyopherin β2 or transportin, and does not require a karyopherin α-like adapter protein. A yeast homolog of karyopherin β2, termed Kap104p, has also been described and proposed to play a role in the nuclear import of a yeast hnRNP-like protein termed Nab2p. Here, we define a Nab2p sequence that binds to Kap104p and that functions as an NLS in both human and yeast cells despite lacking any evident similarity to basic or M9 NLSs. Using an in vitro nuclear import assay, we demonstrate that Kap104p can direct the import into isolated human cell nuclei of a substrate containing a wild-type, but not a defective mutant, Nab2p NLS. In contrast, other NLSs, including the M9 NLS, could not function as substrates for Kap104p. Surprisingly, this in vitro assay also revealed that human karyopherin β1, but not the Kap104p homolog karyopherin β2, could direct the efficient nuclear import of a Nab2p NLS substrate in vitro in the absence of karyopherin α. These data therefore identify a novel NLS sequence, active in both yeast and mammalian cells, that is functionally distinct from both basic and M9 NLS sequences.  相似文献   

16.
Protein cargoes that contain a classic nuclear localization signal (NLS) are transported into the nucleus through binding to a heterodimeric receptor comprised of importin/karyopherin alpha and beta. An evolutionarily conserved auto-inhibitory sequence within the N-terminal importin beta binding (IBB) domain of importin alpha regulates NLS-cargo binding to the NLS binding pocket on importin alpha. In this study, we have used site-directed mutagenesis coupled with in vitro binding assays and in vivo analyses to investigate the intramolecular interaction of the N-terminal IBB domain and the NLS binding pocket of Saccharomyces cerevisiae importin alpha, Srp1p. We find that mutations within the IBB domain that decrease the binding affinity of the auto-inhibitory sequence for the NLS binding pocket impact importin alpha function in vivo. In addition, the severity of the in vivo phenotype is directly correlated to the reduction of auto-inhibition measured in vitro, suggesting that the in vivo phenotypes are directly related to the loss of auto-inhibitory function. We exploit a conditional auto-inhibitory mutant, srp1-55, to study the in vivo functional overlap between the N-terminal IBB domain of importin alpha and other factors implicated in NLS-cargo release, Cse1p and Nup2p. We propose that the N-terminal IBB domain of importin alpha and Cse1p function together in NLS-cargo release, whereas Nup2p contributes to cargo release/importin alpha recycling through a distinct mechanism.  相似文献   

17.
Proteins that contain a classical nuclear localization signal (NLS) are recognized in the cytoplasm by a heterodimeric import receptor composed of importin/karyopherin alpha and beta. The importin alpha subunit recognizes classical NLS sequences, and the importin beta subunit directs the complex to the nuclear pore. Recent work shows that the N-terminal importin beta binding (IBB) domain of importin alpha regulates NLS-cargo binding in the absence of importin beta in vitro. To analyze the in vivo functions of the IBB domain, we created a series of mutants in the Saccharomyces cerevisiae importin alpha protein. These mutants dissect the two functions of the N-terminal IBB domain, importin beta binding and auto-inhibition. One of these importin alpha mutations, A3, decreases auto-inhibitory function without impacting binding to importin beta or the importin alpha export receptor, Cse1p. We used this mutant to show that the auto-inhibitory function is essential in vivo and to provide evidence that this auto-inhibitory-defective importin alpha remains bound to NLS-cargo within the nucleus. We propose a model where the auto-inhibitory activity of importin alpha is required for NLS-cargo release and the subsequent Cse1p-dependent recycling of importin alpha to the cytoplasm.  相似文献   

18.
The yeast Srp1p protein functions as an import receptor for proteins bearing basic nuclear localization signals. Cse1p, the yeast homolog of mammalian CAS, recycles Srp1p back to the cytoplasm after import substrates have been released into the nucleoplasm. In this report we describe genetic interactions between SRP1 and CSE1. Results from genetic suppression and synthetic lethality studies demonstrate that these gene products interact to ensure accurate chromosome segregation. We also describe new mutant alleles of CSE1 and analyze a new temperature-sensitive allele of CSE1, cse1-2. This allele causes high levels of chromosome missegregation and cell cycle arrest during mitosis at the nonpermissive temperature.  相似文献   

19.
Xpo1p (Crm1p) is the nuclear export receptor for proteins containing a leucine-rich nuclear export signal (NES). Xpo1p, the NES-containing protein, and GTP-bound Ran form a complex in the nucleus that translocates across the nuclear pore. We have identified Yrb1p as the major Xpo1p-binding protein in Saccharomyces cerevisiae extracts in the presence of GTP-bound Gsp1p (yeast Ran). Yrb1p is cytoplasmic at steady-state but shuttles continuously between the cytoplasm and the nucleus. Nuclear import of Yrb1p is mediated by two separate nuclear targeting signals. Export from the nucleus requires Xpo1p, but Yrb1p does not contain a leucine-rich NES. Instead, the interaction of Yrb1p with Xpo1p is mediated by Gsp1p-GTP. This novel type of export complex requires the acidic C-terminus of Gsp1p, which is dispensable for the binding to importin beta-like transport receptors. A similar complex with Xpo1p and Gsp1p-GTP can be formed by Yrb2p, a relative of Yrb1p predominantly located in the nucleus. Yrb1p also functions as a disassembly factor for NES/Xpo1p/Gsp1p-GTP complexes by displacing the NES protein from Xpo1p/Gsp1p. This Yrb1p/Xpo1p/Gsp1p complex is then completely dissociated after GTP hydrolysis catalyzed by the cytoplasmic GTPase activating protein Rna1p.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号