首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A total of 39 soil surface samples collected between 11 degrees 30'N 76 degrees 45'E and 12 degrees 45'N 78 degrees 15'E from the mainly deciduous forests in the Biligirirangan-Melagiri hills of the southern Eastern Ghats were analysed for their pollen content. The samples are distributed among four different deciduous and evergreen vegetation types between 210 and 1700m altitudes and fall within three distinct rainfall regimes. The aims of this paper are to provide new data on the modern pollen rain from the Southern Eastern Ghats, a region characterized by a unique and complex climate and vegetation, and to interpret these data using multivariate statistics and the diagram of pollen percentages. We could distinguish first between the deciduous and the evergreen forests and then also between different types of deciduous forest. The distinction between the evergreen and deciduous forests was based on a humidity gradient and that among the deciduous forests on a physiognomic gradient identified through correspondence analysis. The above analysis also allowed us to identify a set of 14 pollen taxa markers and 11 associated pollen taxa that help differentiate the evergreen from deciduous forests. Similarly, a set of 12 pollen taxa markers and six associated pollen taxa was demarcated to help distinguish woodland formations from scrub and thicket formations, among the deciduous vegetation. We could also differentiate amongst the four distinct vegetation types sampled, on the basis of distinct associations of both tree and herb pollen taxa according to their relative abundance in the pollen diagram as well as on the proportion of total arboreal pollen. The ground cover of grasses and other herbaceous plants in the deciduous forests is effectively demonstrated by percentages of non-arboreal pollen varying between 40 and 70%. The 1000m altitude limit reflecting a gradient of humidity and the physiognomic gradient among deciduous forests seem to be important in this region.  相似文献   

2.
Understanding the characteristics of pollen dispersal and deposition of different plant taxa is crucial to accurately reconstructing past landscapes using fossil pollen data. Quantitative reconstruction of past landscapes from pollen data using the Prentice-Sugita approach requires estimates of fall speed and relative pollen productivity for all taxa modelled. This study presents estimates of pollen productivity and fall speeds for key southern African savanna taxa, providing a basis for the improved interpretation of fossil pollen records from this extensive and heterogeneous biome. The work was carried out in 5 steps. (1) Modern pollen assemblages from 34 surface sediment samples were analysed. (2) Vegetation around each sampling site was surveyed in concentric circles to a radius of 50 m, and data from existing park surveys were analysed to extend the survey distance to 5 km. (3) Fall speeds for the main pollen taxa were estimated using Stoke’s Law of particle settling velocity. (4) Vegetation data were weighted using three different distance-weightings, one incorporating the different particle fall speeds. (5) Extended R-Value analysis was carried out on the pollen and distance-weighted plant abundance datasets using HUMPOL software to estimate relevant source area and relative pollen productivity for the main pollen taxa present. Results showed the Relevant Source Area of Pollen surrounding the sites to be 600–900 m radius, and Poaceae/Cyperaceae were found to be twice as productive (PPE 2.03) as the arboreal taxa analysed (PPE 0.50–0.99). The problems encountered in calculating pollen productivity estimates in savanna environments are discussed and improvements for future studies are suggested.  相似文献   

3.
《新西兰生态学杂志》2011,28(2):181-194
A modern pollen-vegetation data set of 46 samples is presented from subantarctic Campbell Island, 600 km south of the New Zealand mainland. The sampled vegetation includes all major community types: maritime turf and grassland, sedge flushes, dwarf forest, scrub, cushion bog, tussock grassland, and high altitude graminoid turfs and tundra. Macrophyllous forbs—characteristic plants of subantarctic islands—are common throughout. Most taxa have highly restricted pollen dispersal, largely due to the short stature of the vegetation and the high proportion of insect-pollinated species. Percentages of pollen or spores of the dominant taxa have a significant positive correlation with the percent vegetation cover of the corresponding species, the exceptions being the widespread ferns Polystichum vestitum and Blechnum spp., and the ubiquitous macrophyllous forb, Bulbinella rossii .The relationship between the vegetation cover of a given taxon and its pollen representation was usually not strong enough to give confidence in a quantitative reconstruction based on pollen frequency alone. However, the broad vegetation groupings have characteristic pollen and spore spectra clearly related to the abundance of their dominant plant species. Detrended correspondence analysis of the pollen spectra grouped most sites according to their source vegetation type and generated a pattern similar to that of vegetation data analysed in a similar fashion in previous studies of the island. This study, together with recent work on Auckland Island pollen and spore representation, has resulted in a combined modem palynological data base of more than 100 sites for the New Zealand subantarctic islands.  相似文献   

4.
Identifying and counting of pollen grains in ambient air samples is still a demanding and time-consuming task even for an experienced microscopist. This article describes a technique which may be employed to establish a fully automated system for this task. Based on a 3D volume fluorescence image of a pollen grain taken with a confocal laser scanning microscope, the described system is able to recognize the pollen taxa. The system autonomously extracts all required information for the recognition from a data base with reference objects (self-learning system) and only needs to calculate very general purpose features of the volumetric data sets (so-called gray scale invariants). This allows for easy adaptation of the system to other conditions (e.g., pollen of a special area) or even other objects than pollen (e.g., spores, bacteria etc.) just by exchanging the reference data base. When using a reference data base with the 26 most important German pollen taxa, the recognition rate is 92%. With a special database for allergic purposes recognizing only Corylus, Alnus, Betula, Poaceae, Secale, Artemisia and ``allergically non-relevant' the recognition rate is 97.4%.  相似文献   

5.
The pollen morphology of 11 species (including two subspecies and two varieties) belonging to two genera (Helianthemum and Fumana) of the family Cistaceae in Egypt was studied using light and scanning electron microscopy.Pollen grains of the studied taxa were found to be radially symmetrical and tricolporate.Pollen size,shape,apertures,and exine ornamentation characteristics were valuable parameters among the studied taxa.The largest pollen size was recorded in H.salicifolium and the smallest one observed in H.kahiricum subsp,schweinfurthii.Pollen shape in the Egyptian taxa varied from (sub-)prolate to prolate spheroidal,but F.arabica is different in having sub-oblate grains.The pollen data confirm that H.lippii and H.sessiliflorum are very closely related species.Pollen sculpture was useful in distinguishing between H.vesicarium var.vesicarium and H.vesicarium var.ciliatum.Three main pollen types of exine ornamentation were recognized:retipilate; reticulate to verrucate; and striate.Based on palynological data,a key for the studied taxa is suggested.  相似文献   

6.
Cyperaceae are the third largest monocotyledon family, with considerable economic and conservation importance. In subfamily Mapanioideae there is particular specialization of the inflorescence into units termed spicoids. The structural homology of the spicoid is difficult to interpret, making determination of intrafamilial relationships problematic. To address this, pollen from eight species in Mapanioideae was investigated using light microscopy and scanning and transmission electron microscopy. Pollen development was also examined to identify the type of pollen present in these species. We also analyzed DNA sequence data using the trnL-F and rps16 regions from 25 genera and 35 species of Cyperaceae, Juncaceae, and Thurniaceae. Two types of pollen, Mapania-type and pseudomonad, were identifed. Analysis of combined DNA and pollen data resolved a clade sister to the rest of Cyperaceae, corresponding to Mapanioideae. Within this, two further clades were resolved. One comprised taxa assigned to tribe Hypolytreae, which had Mapania-type pollen. The other comprised taxa mainly assigned to tribe Chrysitricheae, but included two taxa from Hypolytreae, Capitularina and Exocarya. All taxa in this clade had pseudomonad pollen. Thus new groupings within the subfamily have been discovered based on the specialization of some taxa in terms of their pollination biology.  相似文献   

7.
Fossil pollen data from sediment cores may be used as a measure for past plant diversity. According to the theory of probability, palynological richness is positively related to the pollen count. In a low pollen count, only common taxa are detected, whereas rare taxa are only detected by chance. The detection of all pollen taxa requires a very high pollen count, which is time-consuming. In regular palynological investigations, the detected richness in pollen spectra varies with the pollen count. Rarefaction analysis estimates palynological richness in an exactly equal-sum count for all samples, so that comparison between samples is meaningful. However, the over-representation of some taxa suppresses the detection probability of rare taxa; low total pollen abundance in a sample enhances the detection probability of rare taxa and long-distance transported pollen grains. These factors bias the observed palynological richness and distort comparisons. Palynological richness in a pollen count proportional to its pollen influx may be one proxy for reconstructing diversity trends through time. The use of this proxy overcomes most problems encountered in rarefaction analysis, but is constrained by inaccuracy in estimating pollen influx due to the imprecise time control of sediment cores. Estimating palynological richness by mathematical methods may be another way of reconstructing pollen diversity. Pollen data tend to reflect diversity on a regional scale. Sites from small basins have the advantage of recording diversity at both local and regional scales, if the detection of each taxon is independent. By associating one site from a large basin with a series of sites from very small basins (e.g. forest-hollows), information about both regional and local diversity may be obtained. Entomophilous pollen taxa may have to be measured using a different strategy than anemophilous taxa.  相似文献   

8.
9.
The pollen morphology of some native Greek Aegilops species is investigated in LM (quantitative pollen characters) and SEM (exine sculpture) using acetolysed material. Furthermore, quantitative data are subjected to a multivariate analysis. The tetraploid Ae. cylindrica and its diploid parent Ae. caudata show a distinct morphological affinity as regards their quantitative pollen profile and the features of the exine sculpture. The tetraploid Ae. triuncialis is morphologically divergent from both its parents Ae. caudata and Ae. umbellulata due to the very large values of its quantitative pollen characters. However, the SEM survey of the exine sculpture indicates a rather high degree of similarity between Ae. triuncialis and Ae. umbellulata. No significant differences have been found between the two varieties of Ae. caudata (caudata and polyathera) concerning the quantitative pollen characters as a total or the morphology of the exine sculpture. The resultant clustering of the taxa on the basis of the quantitative pollen characters as well as the recorded similarities of their exine pattern are related to their sectional classification based on cytogenetical and morphological data.  相似文献   

10.
The characteristics of a pollen season, such as timing and magnitude, depend on a number of factors such as the biology of the plant and environmental conditions. The main aim of this study was to develop mathematical models that explain dynamics in atmospheric concentrations of pollen and fungal spores recorded in Rzeszów (SE Poland) in 2000–2002. Plant taxa with different characteristics in the timing, duration and curve of their pollen seasons, as well as several fungal taxa were selected for this analysis. Gaussian, gamma and logistic distribution models were examined, and their effectiveness in describing the occurrence of airborne pollen and fungal spores was compared. The Gaussian and differential logistic models were very good at describing pollen seasons with just one peak. These are typically for pollen types with just one dominant species in the flora and when the weather, in particular temperature, is stable during the pollination period. Based on s parameter of the Gaussian function, the dates of the main pollen season can be defined. In spite of the fact that seasonal curves are often characterised by positive skewness, the model based on the gamma distribution proved not to be very effective.  相似文献   

11.
In the city of Santiago (33°27'S70°38'W), Chile, an atmospheric pollen was monitored for three years using a volumetric Hirst-type pollen trap. The aims of the study were: to assess the pollen types present in the atmosphere, their actual concentrations and dynamics (means and maxima); to establish the pollen calendar for Santiago; and to analyze the aerobiologic characteristics distinguishing introduced and native taxa. Results show that atmospheric pollen mainly originates from the following taxa: Platanus , Poaceae, Acer , Cupressus , Chenopodiaceae, Urticaceae, Morus , Plantago and Oleaceae. For the most frequent pollen types graphs of their atmospheric presence constructed and a table with relevant yearly data for the three studied (July-June) is presented. It is concluded, that the airborne pollen is originating mainly from introduced taxa, many of which are considered allergenic. Native taxa showed no high concentrations. The highest aiborne pollen concentrations where observed in September, however, atmospheric pollen thought to be capable of causing pollinosis, where present during the whole year. The highest pollen concentrations are mostly from trees.  相似文献   

12.
Most research on the impacts of plant invasion focuses on native plant performance, community structure, and ecosystem functioning. Some non-native species can also pose a risk to human health. One such risk is the allergenic nature of the pollen of some introduced plants. We examined whether patterns of airborne pollen differed between non-native and native taxa by summarizing data from seven Spanish Mediterranean localities monitored over 13 yr. The pollen spectra contained 27 native pollen taxa and 18 non-native taxa. Even though pollen from native taxa were more diverse and were present longer in the atmosphere than the non-native, in some years neither the prevalence of the two nor their weekly maximum pollen values differed significantly. However, maximum values for non-native taxa were found earlier in the season than for native pollen. A small percentage of non-native pollen includes pollen from introduced taxa that have not invaded natural habitats (e.g., ornamental plants). Non-native pollen has a larger proportion of allergenic pollen than native pollen. Therefore, the results reveal that the presence of non-native airborne pollen from naturalized and non-naturalized plant species increases the total amount of airborne allergenic pollen grains and the period of allergenic susceptibility.  相似文献   

13.
Three years of pollen trapping data from Barro Colorado Island, Panama, are compared with local vegetation inventories. Two hypotheses relating pollen representation to ‘messy’ pollination and flower form are tested. Dioecious taxa were found to be over‐represented in pollen spectra compared with their occurrence in local forests. Similarly, anemophilous and ‘messy’ pollination types were found to be over‐represented. While anemophilous taxa were the best dispersed pollen types, zoophilous taxa were also well‐represented in dispersal classes of 20–40 m and > 40 m. Thus pollen arriving to lake sediments is most likely to be from anemophilous species or those zoophilous species exhibiting ‘messy’ pollination syndromes. Pollination mechanisms will predictably bias the fossil record against certain flower morphologies. These data are of significance to those using the fossil pollen record to reconstruct the timing and sequence of angiosperm evolution. These data help prioritize plants to be included in modern pollen reference collections and to focus the search for ‘unknown’ types on most‐likely candidate families.  相似文献   

14.
本研究对南京紫金山山麓玄武湖和前湖共17个湖泊表层沉积物样品进行孢粉分析,旨在获得花粉组合新数据,揭示湖泊表层花粉与现生植被的关系,为开展第四纪湖泊地层孢粉学研究提供现代过程的参考.研究结果表明,花粉组合在剔除非自然分布的种植木本植物干扰花粉外,主要以木本花粉的松属(Pinus)和栎属(Quercus)占优势,其他常见...  相似文献   

15.
Question: Can discriminant analysis be used to quantify ecological change? Can fossil pollen data be used as a proxy to quantify moisture availability change through discriminant analysis? Location: Lake Sauce, Amazonian piedmont of Peru. Methods: A linear discriminant function was used to classify taxa found through pollen analysis into wet and dry indicators. The data set was filtered to exclude rare taxa from the analysis. Given that after application of the filter there were more variables (samples) than observations (taxa), the model was “de‐saturated” through simulation of samples based on the existing data set. Results: The inclusion of taxa that have a relative abundance of 1% or more in at least 5% of the samples reduces noise in the data set. Application of discriminant analysis to pollen data gave an error of 18% when classifying taxa by affinity with dry or wet conditions. The inferred moisture availability curve shows consistency with independent proxies from the same core and with identified local and sub‐continental moisture patterns. Conclusions: The method provides a reliable means to reduce a complex paleoecological data set to proportional change in a single pre‐defined variable. The output is a relative scale of change of a defined environmental gradient through time, without reliance on an extensive array of modern analogues. The results appear to provide a comparable quality of information to that of isotopic analysis derived from speleothem or sedimentary records.  相似文献   

16.
Aim Determination of the main directions of variance in an extensive data base of annual pollen deposition, and the relationship between pollen data from modified Tauber traps and palaeoecological data. Location Northern Finland and Norway. Methods Pollen analysis of annual samples from pollen traps and contiguous high‐resolution samples from a peat sequence. Numerical analysis (principal components analysis) of the resulting data. Results The main direction of variation in the trap data is due to the vegetation region in which each trap is located. A secondary direction of variation is due to the annual variability of pollen production of some of the tree taxa, especially Betula and Pinus. This annual variability is more conspicuous in ‘absolute’ data than it is in percentage data which, at this annual resolution, becomes more random. There are systematic differences, with respect to peat‐forming taxa, between pollen data from traps and pollen data from a peat profile collected over the same period of time. Main conclusions Annual variability in pollen production is rarely visible in fossil pollen samples because these cannot be sampled at precisely a 12‐month resolution. At near‐annual resolution sampling, it results in erratic percentage values which do not reflect changes in vegetation. Profiles sampled at near annual resolution are better analysed in terms of pollen accumulation rates with the realization that even these do not record changes in plant abundance but changes in pollen abundance. However, at the coarser temporal resolution common in most fossil samples it does not mask the origin of the pollen in terms of its vegetation region. Climate change may not be recognizable from pollen assemblages until the change has persisted in the same direction sufficiently long enough to alter the flowering (pollen production) pattern of the dominant trees.  相似文献   

17.
The aim of the study is to report a reliable airborne pollen spectrum composition and seasonal timings for the monitored area as a basis for allergy management and to ascertain possible modifications through the detection of trends during the 20-year time series (1989–2008). Pollen was collected at San Michele all’Adige (Trento, Italy) by means of a Hirst-type spore trap. Sampling and counting of airborne pollen grains were carried out according to a national standard. Pollen concentration data for the period were processed in order to characterize the main pollen seasons for a subset of taxa, selected on the basis of their allergenicity and local representativeness. Variations in the pollen data over the years surveyed were analyzed using non-parametric tests. The results showed the presence of 63 pollen taxa, 40 of which belonged to tree and shrub species and 23 to herbaceous species. The local pollen spectrum was characterized by the presence of highly allergenic taxa, such as Urticaceae, Graminaceae, Ostrya sp., and Cupressaceae, in terms of percentage contribution as well as mean daily pollen count or peak values over the years surveyed. A significant upward trend was observed for daily mean pollen amount, mainly due to pollen from woody species and probably ascribable to a temperature-driven increase in pollen production. Evaluation of the results presented will form the basis of further research focussed on the climate change-related causes of modifications to vegetational dynamics as well as on the phenology of flowering and on pollen production.  相似文献   

18.
19.
Morocco is rich in temporary pools which harbour numerous rare plant species. Long-term conservation of such threatened plant communities should be based on the understanding of their past dynamics. Despite conditions unfavourable to pollen preservation, surface sediments of acidic temporary pools are shown to contain pollen assemblages likely to allow vegetation reconstruction. Knowledge of the modern relationships between pollen and vegetation is, however, necessary for interpreting fossil data in terms of past vegetation. Surface pollen assemblages and floristic surveys of a temporary pool in Benslimane forest, western Morocco, are compared in order to evaluate the pollen record of the local hydrophytic vegetation. Floristic surveys were carried out for 12 years (1996-2008) along two crossing permanent transects. A set of 21 surface-sediment samples, taken along the same transects in 2007, were analysed for pollen. The spatial relationships between vegetation and pollen assemblages are explored by means of multivariate analyses, statistical tests and linear regressions. The calculation of representation indices moreover allows proposing quantitative ways for pollen-based plant-abundance reconstruction.Results reveal that the vegetation structure along the hydrological gradient is well recorded in the pollen assemblages, with: (1) a marginal zone characterised by terrestrial taxa and rare amphibious taxa (Elatine, Pilularia), (2) an intermediate zone of amphibious taxa (Alisma-type, Illecebrum/Paronychia, Isoetes velata-type), and (3) a central zone of aquatics (Myriophyllum alterniflorum, Ranunculus-type). The best correlation between the pollen record and total pool vegetation was found in the centre of the pool, which supports the reliability of the study of a single core from the centre of the pool for the reconstruction of the past dynamics of the local hydrophytic vegetation. Both the qualitative ‘community’ approach (representation indices and indicator pollen taxa) and the quantitative ‘taxa’ approach (correction factors) suggest that reconstructions of past populations can be achieved from a few taxa, namely Isoetes velata-type, Myriophyllum alterniflorum and Ranunculus-type. For these taxa, regression parameters (slope and y-intercept) have been calculated between pollen percentages and plant percentages in present vegetation, and between pollen influxes and plant abundances, respectively. These parameters can be extended to interpret fossil data from other temporary pools within the same region to reconstruct their relative and absolute past plant abundances.  相似文献   

20.
Xyridaceae are a predominantly tropical family of five genera that exhibit two pollen morphologies often considered to be of taxonomic importance. Xyris comprises about 95% of the species and is characterized by medium to large, elliptic, sulcate pollen grains. The other pollen class is spheroidal grains without an evident aperture. Many of the species with spheroidal grains have remarkably large and ornamented pollen found to be species specific in earlier research. A scanning electron microscopy investigation of 23 taxa representing all genera with spheroidal pollen revealed new data to further distinguish the genera based on pollen characters. Reliable specific pollen characters need to be evaluated in a statistical study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号