首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several species of Lolium and other cool-season grasses (Poaceae subfamily Pooideae) tend to harbor symbiotic, seed-transmitted, fungi that enhance their fitness by various means. These fungal endophytes--species of Neotyphodium or Epichlo? (Clavicipitaceae)--are known for production of antiherbivore metabolites such as the bioprotective loline alkaloids. Lolines are saturated pyrrolizidines with an exo-1-amine and an ether bridge between C-2 and C-7. The ether bridge is an unusual feature for a biogenic compound in that it links two bridgehead carbon atoms. Much of the loline-biosynthetic pathway has been elucidated by administering isotopically labeled precursors to fungal cultures and by comparisons of loline biosynthesis genes to known gene families. The first step appears to be an unusual gamma-substitution reaction involving an enzyme related to O-acetylhomoserine (thiol) lyase, but which uses the secondary amine of L-proline rather than a sulfhydryl group as the nucleophile. The strained ether bridge is added after formation of the pyrrolizidine rings. Lolines with dimethylated or acylated 1-amines have insect antifeedant and insecticidal activities comparable to nicotine, but little or no toxicity to mammals. Considering the surprising abundance of lolines in some grass-endophyte symbiota, possible additional effects on plant stress tolerance and physiology are worth future consideration. In this review, we discuss the history of loline discovery, methods of analysis, biological activities and distribution in nature, as well as progress on the genetics and biochemistry of their biosynthesis, and on the chemical synthesis of these alkaloids.  相似文献   

2.
Fungal endophytes provide grasses with enhanced protection from herbivory, drought, and pathogens. The loline alkaloids (saturated 1-aminopyrrolizidines with an oxygen bridge) are fungal metabolites often present in grasses with fungal endophytes of the genera Epichlo? or Neotyphodium. We conducted a Mendelian genetic analysis to test for activity of lolines produced in plants against aphids feeding on those plants. Though most loline-producing endophytes are asexual, we found that a recently described sexual endophyte, Epichlo? festucae, had heritable variation for loline alkaloid expression (Lol+) or nonexpression (Lol-). By analyzing segregation of these phenotypes and of linked DNA polymorphisms in crosses, we identified a single genetic locus controlling loline alkaloid expression in those E. festucae parents. We then tested segregating Lol+ and Lol- full-sibling fungal progeny for their ability to protect host plants from two aphid species, and observed that alkaloid expression cosegregated with activity against these insects. The in planta loline alkaloid levels correlated with levels of anti-aphid activity. These results suggested a key role of the loline alkaloids in protection of host plants from certain aphids, and represent, to our knowledge, the first Mendelian analysis demonstrating how a fungal factor contributes protection to plant-fungus mutualism.  相似文献   

3.
The lolines are a class of bioprotective alkaloids that are produced by Epichloë species, fungal endophytes of grasses. These alkaloids are saturated 1-aminopyrrolizidines with a C2 to C7 ether bridge, and are structurally differentiated by the various modifications of the 1-amino group: -NH2 (norloline), -NHCH3 (loline), -N(CH3)2 (N-methylloline), -N(CH3)Ac (N-acetylloline), -NHAc (N-acetylnorloline), and -N(CH3)CHO (N-formylloline). Other than the LolP cytochrome P450, which is required for conversion of N-methylloline to N-formylloline, the enzymatic steps for loline diversification have not yet been established. Through isotopic labeling, we determined that N-acetylnorloline is the first fully cyclized loline alkaloid, implying that deacetylation, methylation, and acetylation steps are all involved in loline alkaloid diversification. Two genes of the loline alkaloid biosynthesis (LOL) gene cluster, lolN and lolM, were predicted to encode an N-acetamidase (deacetylase) and a methyltransferase, respectively. A knockout strain lacking both lolN and lolM stopped the biosynthesis at N-acetylnorloline, and complementation with the two wild-type genes restored production of N-formylloline and N-acetylloline. These results indicated that lolN and lolM are required in the steps from N-acetylnorloline to other lolines. The function of LolM as an N-methyltransferase was confirmed by its heterologous expression in yeast resulting in conversion of norloline to loline, and of loline to N-methylloline. One of the more abundant lolines, N-acetylloline, was observed in some but not all plants with symbiotic Epichloë siegelii, and when provided with exogenous loline, asymbiotic meadow fescue (Lolium pratense) plants produced N-acetylloline, suggesting that a plant acetyltransferase catalyzes N-acetylloline formation. We conclude that although most loline alkaloid biosynthesis reactions are catalyzed by fungal enzymes, both fungal and plant enzymes are responsible for the chemical diversification steps in symbio.  相似文献   

4.
Many grasses live in association with asymptomatic fungi (Neotyphodium spp. endophytes), which grow in the intercellular spaces of the grass. These endophytes produce a range of alkaloids that protect the grass against grazing by mammals and insects. One of these alkaloids is an unusual pyrrolopyrazine, peramine. Peramine appears to be continuously produced by the endophyte, but does not progressively accumulate. No mechanism for the removal of peramine by its further metabolism or any other process has been reported. Our aim was to detect peramine or peramine metabolites in plant fluids to determine if peramine is mobilized, metabolized or excreted by the plant. We also wanted to determine if other fungal metabolites are mobilized by the plant, as has been proposed for the loline alkaloids.We developed a highly sensitive method for the analysis of peramine, using a linear ion trap mass spectrometer. We studied the fragmentation pathway of peramine using ESI MSn and ESI FTICRMS. Based on these results we developed a single reaction monitoring method using the fragmentation of the guanidinium moiety. Cut leaf fluid and guttation fluid of different grass endophyte associations (Lolium perenne with Neotyphodium lolii, Festuca arundinacea with Neotyphodium coenophialum, and Elymus sp. with Epichloë sp.) were analysed. Peramine was detected in the cut leaf fluid of all grass-endophyte associations, but not in the guttation fluid of all associations. In some associations we also detected lolines and ergot peptide alkaloids. This is the first report showing the mobilization of fungal alkaloids into plant fluids by the host plant in grass-endophyte associations.  相似文献   

5.
The leaves of fescue grasses are protected from herbivores by the production of loline alkaloids by the mutualist fungal endophytes Neotyphodium sp. or Epichloë sp. Most bacteria that reside on the leaf surface of such grasses can consume these defensive chemicals. Loline-consuming bacteria are rare on the leaves of other plant species. Several bacterial species including Burkholderia ambifaria recovered from tall fescue could use N-formyl loline as a sole carbon and nitrogen source in culture and achieved population sizes that were about eightfold higher when inoculated onto plants harboring loline-producing fungal endophytes than on plants lacking such endophytes or which were colonized by fungal variants incapable of loline production. In contrast, mutants of B. ambifaria and other bacterial species incapable of loline catabolism achieved similarly low population sizes on tall fescue colonized by loline-producing Neotyphodium sp. and on plants lacking this endophytic fungus. Lolines that are released onto the surface of plants benefiting from a fungal mutualism thus appear to be a major resource that can be exploited by epiphytic bacteria, thereby driving the establishment of a characteristic bacterial community on such plants.  相似文献   

6.
Fungal endophyte-grass associations are diverse and complex. Some endophytes (e.g. Neotyphodium spp.) reproduce asexually by growing vegetatively into host seeds and many of these vertically-transmitted endophytes form mutualisms with their hosts by providing high levels of alkaloids, such as lolines, that reduce herbivore performance. Additionally, Neotyphodium coenophialum provides wound-inducible herbivore resistance through increased production of lolines. Neotyphodium likely evolved from Epichloë spp. which are sexually reproducing endophytes that are transmitted horizontally to the next host generation through production of stromata (fruiting bodies), which sterilize host grasses. We asked if wound-inducible resistance like that in N . coenophialum also occurs in the ancestral, sexually reproducing Epichloë glyceriae , which infects Glyceria striata . Host grasses were damaged by fall armyworm caterpillars, artificially cut, or left undamaged. An aphid bioassay tested the plant's toxicity to herbivores, expression of lolc (a gene in the loline biosynthesis pathway) was quantified using real-time RT-PCR, and loline concentration was quantified using gas chromatography and mass spectrometry. Artificially-damaged plants supported fewer live aphids, had greater lolc mRNA expression, and greater loline concentration than undamaged plants. Herbivore-damaged plants supported intermediate performance by aphids, low lolc mRNA expression, and minimal loline concentration. Our study is the first to demonstrate sexual endophytes can produce lolines following wounding. This suggests wound-induced responses are ancestral within the Epichloë / Neotyphodium clade and reveals a trait of grass endophytes that may have predisposed them for the evolution of defensive mutualisms with their hosts.  相似文献   

7.
Endophytic fungi belonging to the genus Neotyphodium, confer resistance to infected host grasses against insect pests. The effect of host species, and endophtye species and strain, on feeding and survival of the corn flea beetle, Chaetocnema pulicaria Melsheimer (Coleoptera: Chrysomelidae) was investigated. The grass-endophyte associations included natural and artificially derived associations producing varying arrays of common endophyte-related alkaloids or alkaloid groups, peramine, lolitrem B, ergovaline, and the lolines. Preference and nonpreference tests showed that C. pulicaria feeding and survival were reduced by infection of tall fescue with the wild-type strain of N. coenophialum, the likely mechanism being antixenosis rather than antibiosis. In the preference tests, endophyte and host species effects were observed. Of the 10 different Neotyphodium strains tested in artificially derived tall fescue associations, eight strongly deterred feeding by C. pulicaria, whereas the remaining two strains had little or no effect on feeding. Infection of tall fescue with another fungal symbiont, p-endophyte, had no effect. Perennial ryegrass, Lolium perenne L., infected with six strains of endophyte, was moderately resistant to C. pulicaria compared with endophyte-free grass, but four additional strains were relatively inactive. Six Neotyphodium-meadow fescue, Festuca pratensis Huds., associations, including the wild-type N. uncinatum-meadow fescue combination, were resistant, whereas three associations were not effective. Loline alkaloids seemed to play a role in antixenosis to C. pulicaria. Effects not attributable to the lolines or any other of the alkaloids examined also were observed. This phenomenon also has been reported in tests with other insects, and indicates the presence of additional insect-active factors.  相似文献   

8.
Growth and alkaloid production in Uncaria tomentosa cell suspension cultures were studied in Murashige and Skoog medium supplemented with 10 microM 2,4-dichlorophenoxyacetic acid, 10 microM kinetin, and 58 mM sucrose for maintenance and with 10 microM indole-3-acetic acid, 10 microM kinetin, and 58 mM sucrose for production. A U. tomentosa pale Uth-3 cell line, cultured in the production medium, showed a reduced lag phase and a specific growth rate (mu) of 0.27 day(-1), while cells growing in the maintenance medium showed mu = 0.20 day(-1). U. tomentosa cells growing in the production medium produced monoterpenoid oxindole alkaloids (MOA) in amounts of 10.2 +/- 1.6 microg g(-1) dry weight (DW). The chemical profile of MOA produced by in vitro cell cultures was similar to that found in the plant. After 10 subcultures, maximum MOA production decreased to 2.0 +/- 0.7 microg g(-1) DW, while tryptamine alkaloids (TA) were produced with a maximum of 6.2 +/- 0.4 microg g(-1) DW. The increase of initial sucrose concentration up to 145 mM in the production medium enhanced the cell biomass by 3.2-fold (from 10.2 +/- 0.1 to 32.8 +/- 1.1 g DW L(-1)), reduced mu from 0.27 to 0.23 day(-1), and provoked a substantial accumulation of TA (23.1 +/- 4.7 microg g(-1) DW). A high sucrose concentration stimulated MOA production in the maintenance medium (2.7 +/- 0.5 microg g(-1) DW), even in the presence of 2,4-dichlorophenoxyacetic acid.  相似文献   

9.
Epichlo? festucae and related mutualistic symbionts of grasses.   总被引:1,自引:0,他引:1  
Epichlo? and Neotyphodium species (Ascomycota) are mutualistic symbionts (endophytes) of temperate grasses, to which they impart numerous and profound fitness benefits. Epichlo? festucae, a common symbiont of Festuca, Lolium,and Koeleria spp., is a model for endophyte research that is amenable to Mendelian and molecular genetic analysis. Characteristics of E. festucae include: (i) production of the anti-insect alkaloids peramine and lolines, (ii) production of the anti-vertebrate alkaloids lolitrem B and ergovaline, (iii) efficient vertical transmission via host seeds, (iv) a mildly pathogenic state associated with the E. festucae sexual cycle, and (v) a clear role in enhancing survival of host plants. Genetic analysis of alkaloid production has recently begun. Also, physiological and ultrastructural studies suggest that signals communicated between E. festucae and host plants ensure an exquisitely balanced interaction to the mutual benefit of both partners. Several mutualistic Neotyphodium species are hybrids between E. festucae and other endophyte species.  相似文献   

10.
The plant hormone salicylic acid (SA) is recognized as an effective defence against biotrophic pathogens, but its role as regulator of beneficial plant symbionts has received little attention. We studied the relationship between the SA hormone and leaf fungal endophytes on herbivore defences in symbiotic grasses. We hypothesize that the SA exposure suppresses the endophyte reducing the fungal‐produced alkaloids. Because of the role that alkaloids play in anti‐herbivore defences, any reduction in their production should make host plants more susceptible to herbivores. Lolium multiflorum plants symbiotic and nonsymbiotic with the endophyte Epichloë occultans were exposed to SA followed by a challenge with the aphid Rhopalosiphum padi. We measured the level of plant resistance to aphids, and the defences conferred by endophytes and host plants. Symbiotic plants had lower concentrations of SA than did the nonsymbiotic counterparts. Consistent with our prediction, the hormonal treatment reduced the concentration of loline alkaloids (i.e., N‐formyllolines and N‐acetylnorlolines) and consequently decreased the endophyte‐conferred resistance against aphids. Our study highlights the importance of the interaction between the plant immune system and endophytes for the stability of the defensive mutualism. Our results indicate that the SA plays a critical role in regulating the endophyte‐conferred resistance against herbivores.  相似文献   

11.
Rhopalosiphum padi L. (Homoptera: Aphididae) is sensitive to loline alkaloids present in tall fescue, Festuca arundinacea Shreb., infected with the endophytic fungus, Acremonium coenophialum Morgan-Jones & Gams. Aphid survival was higher on endophyte-free plants regardless of plant age after germination or age of regrowth tissue after clipping. Survival of aphids on endophyte-infected grass was lower on young tissue but increased as plants aged, although it never reached the same level on endophyte-free plants. Both N-formyl and N-acetyl loline increased as uncut or regrowth tissue aged; however, this was influenced by the age of the plant at the initial cut and the clipping frequency. Although even small amounts of loline cause high aphid mortality, the aphids are able to survive on endophyte-infected plants if the tillers have senescing leaves which contain lower amounts of loline. Preference for senescing leaves may help R. padi avoid plant parts containing high amounts of toxic allelochemicals, thus contributing to higher numbers of aphids on older, endophyte-infected plants.  相似文献   

12.
The epichloid fungi – comprising sexual Epichloë species and asexual Neotyphodium species – are symbionts of cool-season grasses (subfamily Poöideae), mostly vertically transmissible (seedborne), and well known for production of anti-herbivore alkaloids. Four classes of alkaloids are known to be produced by epichloae: lolines (saturated aminopyrrolizidines), indole–diterpenes, ergot alkaloids, and peramine. There is a wide range of chemotypic diversity among and even within epichloid species. At the molecular level, this diversity may in part reflect the telomeric association of two of the four alkaloid biosynthesis gene clusters. Ecologically, the chemotypic diversity within species may reflect frequency-dependent selection for the alkaloids, which provide defences against insects and, in some cases, vertebrates, but can be expensive to produce. Interspecific hybridization, common among asexual epichloae, can pyramid the alkaloid biosynthesis genes. Compared to sexual epichloae, many asexual epichloae produce high levels of alkaloids – particularly lolines – suggesting that strict vertical transmission selects for enhanced capability of host protection.  相似文献   

13.
We studied the effects of fungal endophyte infection of meadow ryegrass (Lolium pratense=Festuca pratensis) on the frequency of the barley yellow dwarf virus (BYDV). The virus is transferred by aphids, which may be deterred by endophyte-origin alkaloids within the plant. In our experiment, we released viruliferous aphid vectors on endophyte-infected and endophyte-free plants in a common garden. The number of aphids and the percentage of BYDV infections were lower in endophyte-infected plants compared to endophyte-free plants, indicating that endophyte infection may protect meadow ryegrass from BYDV infections.  相似文献   

14.
Tall fescue [Lolium arundinaceum, Schreb., S.J. Darbysh.] productivity and persistence often benefits from association with Neotyphodium coenophialum [Morgan-Jones and Gams], Glenn, Bacon, and Hanlin) endophyte. The influence of novel, non-ergogenic endophytes on nutritive value is unclear, especially when simultaneous stresses (e.g., defoliation and shading) are imposed on the association. We conducted a field experiment using Jesup tall fescue that had either a native or novel non-ergogenic fungal endophyte (AR542; referred to as MaxQ?), or that was endophyte free. Dry matter production and nutritive value including crude protein (CP), non-structural carbohydrates (TNC), ergo- and loline alkaloids, and phenolics were determined for plants stockpiled or clipped repeatedly in sites differing in the amount of light. Productivity varied less among sites when plants were infected with a native endophyte compared to novel or no endophyte. The trend suggests that native endophyte contributed to resilience of the host in this experiment. Leaf dry matter content was affected by host–endophyte association interacting with light availability suggesting differences in leaf composition could occur. Herbage CP increased, whereas TNC decreased with increasing shade. The concentration of loline alkaloids, irrespective of host–endophyte association, tended to increase in leaves with decreasing light availability and could be related to the relatively greater N concentrations in shade-grown leaves. Phenolics decreased in leaves, but increased in stembases as light availability decreased. The combination of increased loline alkaloids in leaves and phenolics in stembases, suggests that shade-grown tall fescue might have some competitive advantage based on the known anti-herbivory attributes of loline alkaloids and phenolic compounds.  相似文献   

15.
Three grass host species--tall fescue, Festuca arundinacea Schreber; meadow fescue, Festuca pratensis Hudson; and perennial ryegrass, Lolium perenne L.--each infected with a number of different Neotyphodium endophyte isolates, were investigated for their effects on fall armyworm, Spodoptera frugiperda (J.E. Smith). Alkaloid profiles varied among associations. Choice and no-choice tests comparing feeding and early development of S. frugiperda larvae on endophyte-infected and endophyte-free leaf blade material were performed. Endophyte-mediated resistance to S. frugiperda was greatest in meadow fescue and weakest in tall fescue. Some endophyte isolates, particularly in perennial ryegrass and meadow fescue, had a major effect on feeding and development of S. frugiperda, whereas others had no effect or were only weakly efficacious. In tall fescue, some associations deterred S. frugiperda from feeding in choice tests but had no effect on development, whereas larvae reared on other associations weighed significantly more than control larvae fed endophyte-free grass. It was concluded that the deleterious consequences of endophyte infection were easily masked by other factors in tall fescue. Relative leaf age had no effect on feeding preferences in the three host species. Chemical analysis of herbage from the plants used, and results from a no-choice study using spiked artificial diets, failed to individually implicate any of the major known alkaloids (peramine, lolitrem B, ergovaline, and lolines) in the observed effects on S. frugiperda. Hypotheses explaining these observations, and their impact on creating desirable grass-endophyte associations for use in pastures, are discussed.  相似文献   

16.
Based on direct infusion mass spectrometry we identified a novel alkaloid as a major component of perennial ryegrass (Lolium perenne). Initial mass spectral data suggested it to be a pyrrolizidine conjugate. As this class of alkaloids has not been described before from grasses, we isolated it to elucidate its structure. The isolated alkaloid proved to be a mixture of two stereoisomers. The structures of the two compounds as determined by 1D and 2D NMR spectroscopy, were E-thesinine-O-4'-alpha-rhamnoside (1) and Z-thesinine-O-4'-alpha-rhamnoside (2). These identifications were supported by the characterisation by GC-MS and optical rotation of (+)-isoretronecanol as the necine base released on alkaline hydrolysis of these alkaloids. 1 and 2 together with the aglycone and a hexoside were also detected in tall fescue (Festuca arundinacea). This is the first report of pyrrolizidine alkaloids produced by grasses (Poaceae).  相似文献   

17.
The insecticidal loline alkaloids, produced by Neotyphodium uncinatum and related endophytes, are exo-1-aminopyrrolizidines with an ether bridge between C-2 and C-7. Loline alkaloids vary in methyl, acetyl, and formyl substituents on the 1-amine, which affect their biological activity. Enzymes for key loline biosynthesis steps are probably encoded by genes in the LOL cluster, which is duplicated in N. uncinatum, except for a large deletion in lolP2. The role of lolP1 was investigated by its replacement with a hygromycin B phosphotransferase gene. Compared to wild type N. uncinatum and an ectopic transformant, DeltalolP1 cultures had greatly elevated levels of N-methylloline (NML) and lacked N-formylloline (NFL). Complementation of DeltalolP1 with lolP1 under control of the Emericella nidulans trpC promoter restored NFL production. These results and the inferred sequence of LolP1 indicate that it is a cytochrome P450, catalyzing oxygenation of an N-methyl group in NML to the N-formyl group in NFL.  相似文献   

18.
Three monoclonal antibodies (mAbs) produced against proteins from the tall fescue (Festuca arundinacea Schreb.) fungal endophyte Neotyphodium coenophialum hybridize exclusively to a fungal protein under denaturing conditions. The protein is approximately 88 kDa in size. These mAbs were individually incorporated into liquid medium to determine their effects on fungal growth in culture. Neotyphodium-specific mAbs inhibited fungal growth for the duration of the study. Fungal cultures grown in the presence of Neotyphodium-naive mAbs or in the absence of all mAbs grew unimpeded. Bright-field microscopy and immunohistochemical studies of cultures containing Neotyphodium-specific mAbs revealed a change in mycelia morphology with clumps exhibiting a gelatinous matrix containing sparse hyphae, while cultures receiving Neotyphodium-naive mAbs in medium demonstrated unrestricted growth with overlapping and branched hyphae. In liquid culture devoid of fungal isolates, mAbs were stable and detected throughout the experiment, but were below threshold detection levels within 15 min following inclusion in liquid cultures containing Neotyphodium spp., indicating rapid binding to fungal mycelia. Monoclonal antibodies may provide a new method to help control plant pathogenic fungi where chemical or genetic means are not feasible.  相似文献   

19.
The fungus P. citrinum produces secondary metabolites, clavine ergot alkaloids (EA), and quinoline alkaloids quinocitrinines (QA) in medium with various carbon and nitrogen sources and in the presence of iron, copper, and zinc additives. Mannitol and sucrose are most favorable for EA biosynthesis and mannitol is most favorable for QA. Maximum alkaloid production is observed on urea. Iron and copper additives in the medium containing zinc ions stimulated fungal growth but inhibited alkaloid biosynthesis. The production of these secondary metabolites does not depend on the physiological state of culture, probably due to the constitutive nature of the enzymes involved in biosynthesis of these substances.  相似文献   

20.
A tissue culture protocol for restoring embryogenic ability and increasing green plant regeneration from long-term callus (5-year old) and suspension cultures of Dawson red fescue (Festuca rubra var trichyoplylla Gaud) was developed. Pretreatment with elevated levels of sucrose over the standard level (60 mM) enhanced regeneration capacity and decreased the number of albino plants. The highest degree of embryogenesis and green shoot number occurred when calli were pre-treated on MS basal medium supplemented with 120 mM sucrose. Mannitol caused callus discoloration and death if added to pre-treatment media at 60, 90, 120, 150 or 180 mM. Cell suspension growth was greatest when 135 mM sucrose was added to the pre-treatment growth media. High concentrations of sucrose (135 and 180 mM) were necessary for plant regeneration from suspension aggregates pretreated with 135 or 180 mM sucrose and then plated on a growth regulator-free regeneration medium composed of half-strength MS salts and B5 vitamins.Journal Paper no. 3032 of the Massachuesetts Agricultural Experiment Station  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号