首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Mutations in the βIGH3 gene on chromosome 5q31 cause five distinct autosomal dominant corneal dystrophies: granular Groenouw type I, Reis-Bücklers’, lattice type I and IIIA, and Avellino corneal dystrophies. We present here a new mutation of the βIGH3 gene in patients with late-onset lattice corneal dystrophy manifest as a deep stromal opacity. To test the previously reported R124C, R124H, P501T, R555W, and R555Q mutations of the βIGH3 gene, 30 patients and 11 normal relatives from 16 independently ascertained families with lattice corneal dystrophy, 49 patients and 12 normal relatives from 40 independently ascertained families with other corneal dystrophies, and 40 unrelated normal volunteers, were analyzed. A L527R (CTG/CGG) mutation of the βIGH3 gene was found in 6 unrelated patients with lattice corneal dystrophy. A retrospective review of the patients’ records showed that the opacities were deep in the stromal layer and of late onset. The mutation was a heterozygous single base-pair transversion from T to G of the second nucleotide position of codon 527. This caused the substitution of arginine for leucine. These six patients did not have mutations in codons 124, 501, or 555. The L527R mutation was not detected in the other corneal dystrophies or 40 normal volunteers. Although phenotypic variations in the size and shape of the deposits were found, all patients with the L527R mutation showed deposits deep in the stromal layer. We conclude that there are now at least six different mutations that have been detected in the βIGH3 gene on chromosome 5q31 and that lead to corneal dystrophy. Received: 14 April 1998 / Accepted: 10 June 1998  相似文献   

2.
Zhang C  Nie X  Hu D  Liu Y  Deng Z  Dong R  Zhang Y  Jin Y 《Cell and tissue research》2007,329(2):249-257
Tissue-engineered replacement of diseased or damaged tissue has become a reality for some types of tissue, such as skin and cartilage. Tissue-engineered corneal stroma represents a promising concept to overcome the limitations of cornea replacement with allograft. In this study, porcine cornea was decellularized by a series of extraction methods, and the in vivo biocompatibility of the scaffold was measured subcutaneously in rabbits (n = 8). These were not acutely rejected and no abscesses were observed by hematoxylin and eosin staining at the 8th week, indicating that the scaffolds had good biocompatibility. To investigate the potential value of clinical applications, rabbit stromal keratocytes were implanted onto decellularized scaffolds to fabricate tissue-engineered corneal stroma. Allograft, tissue-engineered corneal stroma, or scaffolds were implanted into a model of corneal ulcer. The survival and reconstruction of corneal transplantation were morphologically evaluated by light and electron microscopy until the 32nd week after implantation. Experiments involving transplantation indicated that the epithelial and stromal defect healed quickly, with improvement in corneal clarity. The integration of the graft was accompanied by neurite ingrowth from the host tissue. By 16 weeks after transplantation, the cornea had gradually regained an intact state similar to that of normal cornea. Our results demonstrate that the tissue-engineered corneal stroma with allogenetic cells is a promising therapeutic method for corneal injury. This study was supported by the Nature Science Foundation of China (project no. 30572046) and the Development of High and New Science and Technology (863 Project) of China (2002AA205041, 2005AA205241).  相似文献   

3.
This study was designed to explore the feasibility of using autologous rabbit adipose derived stem cells (rASCs) as seed cells and polylactic-co-glycolic acid (PLGA) as a scaffold for repairing corneal stromal defects. rASCs isolated from rabbit nape adipose tissue were expanded and seeded on a PLGA scaffold to fabricate cell-scaffold constructs. After 1 week of cultivation in vitro, the cell-scaffold complexes were transplanted into corneal stromal defects in rabbits. In vivo, the autologous rASCs-PLGA constructed corneal stroma gradually became transparent without corneal neovascularization after 12 weeks. Hematoxylin and eosin staining and transmission electron microscopy examination revealed that their histological structure and collagen fibril distribution at 24 weeks after implantation were similar to native counterparts. As to the defect treated with PLGA alone, the stromal defects remained. And scar tissue was observed in the untreated-group. The implanted autologous ASCs survived up to 24 weeks post-transplantation and differentiated into functional keratocytes, as assessed by the expression of aldehyde-3-dehydrogenase1A1 (ALDH1A1) and cornea-specific proteoglycan keratocan. Our results revealed that autologous rASCs could be one of the cell sources for corneal stromal restoration in diseased corneas or for tissue engineering of a corneal equivalent.  相似文献   

4.
Cell matrix interactions are important in understanding the healing characteristics of the cornea after refractive surgery or transplantation. The purpose of this study was to characterize in more detail the evolution of biomechanical and optical properties of a stromal equivalent (stromal fibroblasts cultured in a collagen matrix). Human corneal stromal fibroblasts were cultured in a collagen matrix. Compaction and modulus were determined for the stromal equivalent as a function of time in culture and matrix composition. The corneal stromal fibroblasts were stained for alpha-smooth muscle actin expression as an indicator of myofibroblast phenotype. The nominal modulus of the collagen matrix was 364 +/- 41 Pa initial and decreased initially with time in culture and then slowly increased to 177 +/- 75 Pa after 21 days. The addition of chondroitin sulfate decreased the contraction of the matrix and enhanced its transparency. Cell phenotype studies showed dynamic changes in the expression of alpha-smooth muscle actin with time in culture. These results indicate that the contractile behavior of corneal stromal cells can be influenced by both matrix composition and time in culture. Changes in contractile phenotype after completion of the contraction process also indicate that significant cellular changes persist beyond the initial matrix-remodeling phase.  相似文献   

5.
Currently, there are no accepted alternative tests for the replacement of animals in ocular irritation testing. This study focused on the quantification of cellular viability as a measure of toxic events in immortalised human corneal cell cultures and a three-dimensional corneal construct. Simultaneous vital dye staining by calcein AM and ethidium homodimer-1 was used to provide "live" and "dead" probes, respectively. For further quantification, we have developed image processing tools to evaluate digital images obtained from confocal fluorescence scanning microscopy measurements. Based on the finding that ocular irritation can be related to the extent of cell injury at the various cell layers of the cornea, we extended our studies from corneal cell cultures to an in vitro human corneal equivalent system comprising epithelial, stromal keratocyte and endothelial layers. Our results showed that the microscopic measurement of cellular injury by using either cell cultures or in vitro corneal constructs, combined with image processed quantification, can provide insight into the extent of the toxic effects.  相似文献   

6.
Objective: To define the best conditions foramniotic membrane preparation, storage and banking in its use for cornealreconstruction.Methods: Amniotic membrane pieces were prepared understerile conditions from placentas selected on the basis of donor medical andsocial history, serology, microbiological tests and histology. The pieces werekept at –140 °C but before grafting they werethawed and stored at 4 °C in RPMI medium, to have apreparation usable within 72 h. This procedure was validatedby testing its therapeutic effectiveness in 25 patients 13 of which had cornealulcers of various origin, 3 had sequelae of herpes simplex keratitis, 3 bandkeratopathy and 6 corneal stem cell deficiency due to chemical or thermalburns.Results: The preparation showed appreciableanti-inflammatory and analgesic effects. In the absence of corneal stem celldeficiency a stable re-epithelialisation was achieved in 15 out of 19 patients.When the limbus was lesioned, the amniotic membrane decreased vascularizationand increased the number of corneal epithelial cells only in 1 of the 6patients. No adverse reactions attributable to the tissue were recorded.Conclusions: A ready-to-use amniotic membrane preparationstored at 4 °C after cryopreservation has been tested incorneal reconstruction. Like the amniotic membrane thawed immediately beforegrafting, this preparation displayed full therapeutic effect in epithelialdefects with stromal ulceration but without severe limbal stem cell deficiency.In two years banking activity 463 pieces of the preparation were successfullydistributed to 90 Italian hospitals.  相似文献   

7.
To assess the quantitative and qualitative parameters of pre-cut posterior corneal lamellae for Descemet membrane endothelial keratoplasty with a stromal rim (DMEK-S) prepared manually in the Ocular Tissue Bank Prague. All 65 successfully prepared pre-cut posterior corneal lamellae provided for grafting during a 2-year period were analyzed retrospectively. The lamellae, consisting of a central zone of endothelium-Descemet membrane surrounded by a supporting peripheral stromal rim, were prepared manually from corneoscleral buttons having an endothelial cell density higher than 2,500 cells/mm2. The live endothelial cell density, the percentage of dead cells, the hexagonality and the coefficient of variation were assessed before and immediately after preparation as well as after 2 days of organ culture storage at 31 °C. Altogether, the endothelium of 57 lamellae was assessed. Immediately after preparation, the mean live endothelial cell density was 2,835 cells/mm2 and, on average, 1.8 % of dead cells were found. After 2 days of storage, the cell density decreased significantly to 2,757 cells/mm2 and the percentage of dead cells to 1.0 %. There was a significant change in the mean hexagonality and the coefficient of variation after lamellar preparation and subsequent storage. The amount of tissue wasted during the preparation was 23 %. The endothelial cell density of posterior corneal lamellae sent for DMEK-S was higher than 2,700 cells/mm2 in average with a low percentage of dead cells; 65 pre-cut tissues were used for grafting during a 2-year period.  相似文献   

8.
TGFBI gene mutations cause corneal stromal dystrophies of autosomal dominant inheritance. The most frequent complication of stromal dystrophies is recurrent corneal erosion with varying degree of accompanying inflammation. IL-1, IL-6 and IL-8 are main cytokines involved in corneal erosion healing. This study aimed to investigate the association between IL1B gene ?511C/T, IL6 gene ?174G/C and IL8 gene ?781C/T polymorphisms and risk of recurrent erosion development in patients with hereditary corneal stromal dystrophies. A trend to decrease of IL1B gene ?511TT genotype frequency in group with erosion (3.7%) comparing to control (6.7%) was observed. IL6 gene ?174C allele carriers frequency in control group (65.9%) was significantly (P < 0.05) lower comparing to patients with erosion (80.5%). Frequency of IL8 ?781TT genotype was significantly (P < 0.05) lower in the group with erosion (10.7%) comparing to patients without erosion (30.8%) and control (25%). IL6 gene ?174C allele may be considered as genetic marker of corneal erosion risk in patients with hereditary stromal corneal dystrophies, whereas IL8 ?781TT genotype is associated with negative recurrent erosion prognosis in such patients.  相似文献   

9.
Tissue engineering holds great promise for corneal transplantation to treat blinding diseases. This study was to explore the use of natural corneal stroma as an optimal substrate to construct a native like corneal equivalent. Human corneal epithelium was cultivated from donor limbal explants on corneal stromal discs prepared by FDA approved Horizon Epikeratome system. The morphology, phenotype, regenerative capacity and transplantation potential were evaluated by hematoxylin eosin and immunofluorescent staining, a wound healing model, and the xeno-transplantation of the corneal constructs to nude mice. An optically transparent and stratified epithelium was rapidly generated on donor corneal stromal substrate and displayed native-like morphology and structure. The cells were polygonal in the basal layer and became flattened in superficial layers. The epithelium displayed a phenotype similar to human corneal epithelium in vivo. The differentiation markers, keratin 3, involucrin and connexin 43, were expressed in full or superficial layers. Interestingly, certain basal cells were immunopositive to antibodies against limbal stem/progenitor cell markers ABCG2 and p63, which are usually negative in corneal epithelium in vivo. It suggests that this bioengineered corneal epithelium shared some characteristics of human limbal epithelium in vivo. This engineered epithelium was able to regenerate in 4 days following from a 4mm-diameter wound created by a filter paper soaked with 1 N NaOH. This corneal construct survived well after xeno-transplantation to the back of a nude mouse. The transplanted epithelium remained multilayer and became thicker with a phenotype similar to human corneal epithelium. Our findings demonstrate that natural corneal stroma is an optimal substrate for tissue bioengineering, and a native-like corneal construct has been created with epithelium containing limbal stem cells. This construct may have great potential for clinical use in corneal reconstruction.  相似文献   

10.
目的:探讨体外诱导兔骨髓间充质干细胞(BMSCs)分化为角膜基质细胞的可行性,并观察纤维蛋白胶(FG)作为细胞支架材料的效果。方法:密度梯度法获得BMSCs,体外诱导实验将细胞分为三组:对照组用普通培养皿、BMSCs培养条件并不加角膜基质细胞共培养的条件下培养;非FG共培养组使用普通培养皿并与角膜基质细胞共培养诱导BMSCs分化;FG共培养组使用铺有FG的培养皿并与角膜基质细胞共培养诱导BMSCs分化。培养1w及2w后用WestenBlot法检测三组细胞Keratocan的表达,在相差显微镜下进行形态学观察。结果:原代培养的BMSCs表现出成体干细胞潜能,CD29染色阳性,符合骨髓基质干细胞的特征。诱导培养2周后对照组BMSCs融合成单层、呈条索状生长;非FG共培养组部分细胞体积变小、多突起,局部呈梭形生长;FG共培养组细胞生长状态良好,部分细胞呈梭形或纺锤形,与FG生物相容性好。Westen检测结果:BMSCs细胞在纤维蛋白胶或普通培养皿上特定培养条件下均能诱导表达角膜基质细胞的特异性蛋白Keratocan。结论:骨髓间充质干细胞在条件培养基下可分化为角膜基质细胞,有望作为治疗角膜疾病及角膜组织工程的备选材料,纤维蛋白胶组织相容性好,可为组织工程提供移植细胞片。  相似文献   

11.
The synthesis of thermosensitive copolymers based on pullulan and polyether amine was performed in water using a water-soluble carbodiimide and N-hydroxysuccinimide as activators. Jeffamine® M2005 was chosen as a polyether to impart thermosensitive character to the copolymer. Pullulan was modified into carboxymethylpullulan, to bring carboxylate groups to the polysaccharide so as to further the grafting reaction. The copolymers were characterized by FT-IR, 1H NMR spectroscopy and molecular weights measurements (by SEC coupled with MALS/DRI/Viscometer lines). The thermosensitive behaviour of CMP-g-M2005 copolymers was studied by fluorescence spectroscopy of pyrene, by rheometry and microDSC measurements. The sol-gel transition temperature was found dependent on the solvent, the grafting degree of M2005 and the concentration of the copolymer. For example it was 35 °C in water, 28 °C in acid buffer (0.1 M, pH 5.4) and 26 °C in saline phosphate buffer (0.15 M, pH 7.4) for a grafting degree of 0.20 at a concentration of 5 wt%.  相似文献   

12.
Corneal transplantation is the primary treatment option to restore vision for patients with corneal endothelial blindness. Although the success rate of treatment is high, limited availability of transplant grade corneas is a major obstacle. Tissue-engineered corneal endothelial grafts constructed using cultivated human corneal endothelial cells (hCENC) isolated from cadaveric corneas may serve as a potential graft source. Currently, tools for the characterization of cultured hCENC and enrichment of hCENC from potential contaminating cells such as stromal fibroblasts are lacking. In this study, we describe the generation and characterization of novel cell surface monoclonal antibodies (mAbs) specific for hCENC. These mAbs could be used for enrichment and characterization of hCENC. Out of a total of 389 hybridomas, TAG-1A3 and TAG-2A12 were found to be specific to the corneal endothelial monolayer by immunostaining of frozen tissue sections. Both mAbs were able to clearly identify hCENC with good ‘cobblestone-like’ morphology from multiple donors. The antigen targets for TAG-1A3 and TAG-2A12 were found to be CD166/ALCAM and Peroxiredoxin-6 (Prdx-6), respectively, both of which have not been previously described as markers of hCENC. Additionally, unlike other Prdx-6 mAbs, TAG-2A12 was found to specifically bind cell surface Prdx-6, which was only expressed on hCENC and not on other cell types screened such as human corneal stromal fibroblasts (hCSF) and human pluripotent stem cells (hPSC). From our studies, we conclude that TAG-1A3 and TAG-2A12 are promising tools to quantitatively assess hCENC quality. It is also noteworthy that the binding specificity of TAG-2A12 could be used for the enrichment of hCENC from cell mixtures of hCSF and hPSC.  相似文献   

13.

Purpose

To identify corneal epithelial- and stromal-thickness distribution patterns in keratoconus using spectral-domain optical coherence tomography (SD-OCT).

Patients and Methods

We analyzed SD-OCT findings in 20 confirmed cases of keratoconus (group 1) and in 20 healthy subjects with corneal astigmatism ≥2 D (group 2). Epithelial and stromal thicknesses were measured at 11 strategic locations along the steepest and flattest meridians, previously located by corneal topography. Vertical mirrored symmetry superimposition was used in the statistical analysis.

Results

The mean maximum keratometry measurements in groups 1 and 2 were 47.9±2.9 D (range, 41.8–52.8) and 45.6±1.1 D (range, 42.3–47.5), respectively, with mean corneal cylinders of 3.3±2.2 D (range, 0.5–9.5) and 3.6±1.2 D (range, 2.0–6.4), respectively. The mean epithelial thickness along the steepest meridian in group 1 was the lowest (37.4±4.4 µm) at 1.2 mm inferotemporally and the highest (59.3±4.4 µm) at 1.4 mm supranasally from the corneal vertex. There was only a small deviation in thickness along the steepest meridian in group 2, as well as along the flattest meridians in both groups. The stromal thickness distribution in the two groups was similar to the epithelial, while the stromal thickness was generally lower in group 1 than in group 2.

Conclusions

SD-OCT provides details about the distribution of corneal epithelial and stromal thicknesses. The epithelium and stroma in keratoconic eyes were thinner inferotemporally and thicker supranasally compared with control eyes. The distribution pattern was more distinct in epithelium than in stroma. This finding may help improve the early diagnosis of keratoconus.

Trial Registration

ClinicalTrials.gov NCT02023619  相似文献   

14.
Within the last decade, extensive research in the field of tissue and organ engineering has focused on the development of in vitro models of the cornea. The use of organotypic, three-dimensional corneal equivalents has several advantages over simple monolayer cultures. The aim of this study was to develop a corneal equivalent model composed of the same cell types as in the natural human tissue, but by using immortalised cell lines to ensure reproducibility and to minimise product variation. We report our success in the establishment of an SV40-immortalised human corneal keratocyte cell line (designated HCK). A collagen matrix, built up with these cells, displayed the morphological characteristics of the human stromal tissue and served as a biomatrix for the immortalised human corneal epithelial and endothelial cells. Histological cross-sections of the whole-cornea equivalents resemble human corneas in tissue structure. This organotypic in vitro model may serve as a research tool for the ophthalmic science community, as well as a model system for testing for eye irritancy and drug efficacy.  相似文献   

15.
LASIK (laser-assisted in situ keratomileusis) is a common laser refractive procedure for myopia and astigmatism, involving permanent removal of anterior corneal stromal tissue by excimer ablation beneath a hinged flap. Correction of refractive error is achieved by the resulting change in the curvature of the cornea and is limited by central corneal thickness, as a thin residual stromal bed may result in biomechanical instability of the cornea. A recently developed alternative to LASIK called Refractive Lenticule Extraction (ReLEx) utilizes solely a femtosecond laser (FSL) to incise an intrastromal refractive lenticule (RL), which results in reshaping the corneal curvature and correcting the myopia and/or astigmatism. As the RL is extracted intact in the ReLEx, we hypothesized that it could be cryopreserved and re-implanted at a later date to restore corneal stromal volume, in the event of keratectasia, making ReLEx a potentially reversible procedure, unlike LASIK. In this study, we re-implanted cryopreserved RLs in a non-human primate model of ReLEx. Mild intrastromal haze, noted during the first 2 weeks after re-implantation, subsided after 8 weeks. Refractive parameters including corneal thickness, anterior curvature and refractive error indices were restored to near pre-operative values after the re-implantation. Immunohistochemistry revealed no myofibroblast formation or abnormal collagen type I expression after 8 weeks, and a significant attenuation of fibronectin and tenascin expression from week 8 to 16 after re-implantation. In addition, keratocyte re-population could be found along the implanted RL interfaces. Our findings suggest that RL cryopreservation and re-implantation after ReLEx appears feasible, suggesting the possibility of potential reversibility of the procedure, and possible future uses of RLs in treating other corneal disorders and refractive errors.  相似文献   

16.

Purpose

To investigate the effects of lenticule creation and subsequent corneal lenticule extraction on corneal deformation parameters during small incision lenticule extraction (SMILE) procedure.

Materials and Methods

In this prospective study, 18 eyes of 10 patients (27.90±7.11 years, −5.64±2.45 diopters) scheduled for SMILE procedure were enrolled. Changes in the corneal deformation parameters, including deformation amplitude (DA), applanation time(AT1 and AT2), applanation length(AL1 and AL2), corneal velocity(CV1 and CV2), peak distance(P.Dist.), radius and intraocular pressure values were measured preoperatively, immediately after lenticule creation and subsequent to corneal lenticule extraction in all eyes with the Corvis Scheimpflug Technology (Corvis ST, OCULUS, Wetzlar, Germany). Repeated measures analysis of variance (ANOVA) with bonferroni-adjusted post hoc comparisons was performed to investigate changes following each step of the procedure.

Results

All surgical procedures were uneventful. A significant difference was detected among the three time points (pre-operation, post-lenticule creation and post lenticule extraction) for AT1 (P<0.001), AT2 (P = 0.001), DA(P<0.001), and IOP(P = 0.002). Bonferroni-adjusted post hoc comparisons indicated that there was no significant change in AT1, AT2, DA, or IOP after lenticule creation (post hoc P>0.05), but there was a significant change in these parameters following subsequent corneal lenticule extraction (post hoc P<0.01), when compared to values obtained pre-operatively. The scheimpflug camera of the Corvis ST demonstrated the intralamellar small gas bubbles formed from the vaporisation of tissue after lenticule creation and a gray zone was observed between the cap and the residual stromal bed after lenticule extraction.

Conclusions

There is a significant change in corneal deformation parameters following SMILE procedure. The changes may be caused predominantly by stromal lenticule extraction, while lenticule creation with femtosecond laser may not have an obvious effect on corneal deformation properties.  相似文献   

17.
Viscoelastic characterization of the tissue-engineered corneal stromal model is important for our understanding of the cell behaviors in the pathophysiologic altered corneal extracellular matrix (ECM). The effects of the interactions between stromal cells and different ECM characteristics on the viscoelastic properties during an 11-day culture period were explored. Collagen-based hydrogels seeded with keratocytes were used to replicate human corneal stroma. Keratocytes were seeded at 8 × 103 cells per hydrogel and with collagen concentrations of 3, 5 and 7 mg/ml. Air-pulse-based surface acoustic wave optical coherence elastography (SAW-OCE) was employed to monitor the changes in the hydrogels' dimensions and viscoelasticity over the culture period. The results showed the elastic modulus increased by 111%, 56% and 6%, and viscosity increased by 357%, 210% and 25% in the 3, 5 and 7 mg/ml hydrogels, respectively. To explain the SAW-OCE results, scanning electron microscope was also performed. The results confirmed the increase in elastic modulus and viscosity of the hydrogels, respectively, arose from increased fiber density and force-dependent unbinding of bonds between collagen fibers. This study reveals the influence of cell-matrix interactions on the viscoelastic properties of corneal stromal models and can provide quantitative guidance for mechanobiological investigations which require collagen ECM with tuneable viscoelastic properties.  相似文献   

18.
Previous studies have revealed that the RE strain of HSV type 1 (HSV-1) induces a tissue-destructive inflammatory response in the mouse cornea that is mediated by CD4 T lymphocytes, whereas the KOS strain of HSV-1 preferentially activates CD8 T lymphocytes in the cornea. Langerhans cells (LC) normally reside only at the periphery of the cornea but can migrate centripetally after HSV-1 infection. We studied the relative contribution of LC to the corneal inflammation induced by the KOS and RE strains of HSV-1. Ten days after infection, the central one-third of RE HSV-1-infected corneas contained an average of 5.7 LC/high-power field compared with 0.6 LC/high-power field in KOS-infected corneas. We hypothesized that the increased density of LC in RE HSV-1-infected corneas at the time of T lymphocyte infiltration contributed to the preferential activation of CD4 T lymphocytes in these corneas. To test this hypothesis, we gave mice a low dose of UV-B corneal irradiation (150 mJ/cm2) 1 day before infection with HSV-1. UV-B irradiation effectively prevented the migration of LC into the central cornea when measured 10 or 21 days after corneal infection with either HSV-1 strain. UV-B corneal irradiation had no effect on the CTL response to HSV-1 Ag in the regional lymph nodes after corneal infection with KOS or RE HSV-1. The delayed-type hypersensitivity response induced by both strains of virus, when measured 8 and 14 days after corneal infection, was significantly reduced by UV-B irradiation. UV-B irradiation significantly reduced the incidence (p = 0.0023) and severity (p = 0.0008) of corneal stromal disease induced by RE HSV-1 but did not significantly affect the stromal disease induced by KOS HSV-1. To distinguish between the effect of UV-B treatment on the afferent and efferent arms of the Ir in mice, we administered UV-B treatment to one eye, followed 24 h later by RE HSV-1 infection of both eyes. These mice developed a normal delayed-type hypersensitivity response, and stromal inflammation developed normally in the untreated eye. However, stromal inflammation was significantly reduced in the treated eye. Our findings suggest that LC play a critical role in the activation of HSV-reactive CD4 T lymphocytes in the cornea. Moreover, the type of corneal inflammation induced by different strains of HSV-1 may reflect their differential capacity to induce LC migration into the central cornea.  相似文献   

19.
The short supply of donor corneas is exacerbated by the unsuitability of donors with insufficient endothelial cell density. Few studies have investigated promoting corneal endothelial cell proliferation to increase the endothelial cell density. We hypothesize that pre‐transplantation treatment of proliferative tissue‐cultivated corneas may increase corneal endothelial cell density. We observed that the airlift cultures were superior to immersion cultures with respect to both transparency and thickness. In this tissue culture system, we observed that lysophosphatidic acid increased the rabbit corneal endothelial cell density, number of BrdU‐positive cells and improve wound healing. We also observed an indirect effect of lysophosphatidic acid on corneal endothelial cell proliferation mediated by the stimulation of interleukin‐1β secretion from stromal cells. Human corneal tissues treated with lysophosphatidic acid or interleukin‐1β contained significantly more Ki‐67‐positive cells than untreated group. The lysophosphatidic acid‐ or interleukin‐1β‐treated cultured tissue remained hexagon‐shaped, with ZO‐1 expression and no evidence of the endothelial‐mesenchymal transition. Our novel protocol of tissue culture may be applicable for eye banks to optimize corneal grafting.  相似文献   

20.
Keratoconus is a disease which thins and scars the central cornea. Confluent cultures of corneal stromal cells were derived from patients with keratoconus. The collagen synthesized by these cultures was compared to the collagen synthesized by age-matched normal human corneal stromal cultures. Although the amount of collagen and the types of collagen synthesized were similar, relative proportion of type I collagen and A, B chains produced was significantly altered in keratoconus cultures. The DEAE-cellulose chromatograms of procollagen in the medium fraction were different, not only between normal control and keratoconus cultures but also among keratoconus patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号