首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Despite the central role suggested for regulatory mutations in many evolutionary scenarios, there is relatively little information available about the type and extent of regulatory differences between species, or to what extent differences between species are independent of variation within species. To address this issue we have studied the regulatory system of β-glucuronidase, a gene implicated in a murine androgen-inducible pheromone-signalling system. We examined the changes in β-glucuronidase hormonal regulation which have occurred during the radiation of a group of 12 closely related species of mice by assaying β-glucuronidase activity in six different tissues after treatment with estrogen, and with androgen alone and in combination with either estrogen or growth hormone. We also examined in some detail the extent of variation in regulatory responses within species. We found extensive variation in regulatory phenotypes both within and among the species surveyed, suggesting that many of the species examined are currently polymorphic for various regulatory factors that affect inducibility of β-glucuronidase. The variation we observed reflects changes in the ability of the β-glucuronidase gene to respond to hormonal influences, rather than changes in aspects of the hormonal signalling system exterior to the gene. The marked differences among species in the renal and uterine responses to hormonal induction of β-glucuronidase are not easily related to the phylogeny of the genus Mus. If hormonal induction of the gene for β-glucuronidase is subject to natural selection, it appears to be subject to widely fluctuating selective forces. We review evidence that the apparently disorderly evolution of the hormonal responsiveness of β-glucuronidase does not appear to be a unique property of this regulatory system. In contrast to the evolution of many protein sequences, which are tightly correlated with phylogeny and proceed at a relatively constant rate, some, perhaps many, regulatory phenotypes are in rapid evolutionary flux, providing an extensive range of phenotypes upon which selection can act.  相似文献   

8.
9.
10.
11.
The microbial life that exists in harsh habitats of low pH possess several unique characteristics, which assign interesting qualities to these microorganisms and enable them to thrive in such a harsh environment. Among microorganisms inhabiting low pH environments, fungi are the second largest reported organisms. These acidophilic fungi are the main source of acid–stable enzymes that could be utilized in many industries including paper, leather making, food and feed industries, where the efficacy of commonly available enzymes is limited by challenges like stability and functional kinetics. The current review discusses the acidophilic fungi with emphasis on their diversity and pH homeostasis mechanisms adopted against low pH environments. In addition, an overview about the acid–stable enzymes obtained from these acidophilic fungi, their main sources and potential applications have also been discussed.  相似文献   

12.
There is well-conserved PacC/Rim101 signaling among ascomycete fungi to mediate environmental pH sensing. For pathogenic fungi, this pathway not only enables fungi to grow over a wide pH range, but it also determines whether these fungi can successfully colonize and invade the targeted host. Within the pal/PacC pathway, palH is a putative ambient pH sensor with a seven-transmembrane domain. To characterize the function of a palH homolog, AopalH, in the nematophagous fungus Arthrobotrys oligospora, we knocked out the encoding gene of AopalH through homologous recombination, and the transformants exhibited slower growth rates, greater sensitivities to cationic and hyperoxidation stresses, as well as reduced conidiation and reduced trap formation, suggesting that the pH regulatory system has critical functions in nematophagous fungi. Our results provide novel insights into the mechanisms of pH response and regulation in fungi.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号