首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aromatase inhibitors have now been approved as first-line treatment options for hormone-dependent advanced breast cancer. When compared to tamoxifen, these aromatase inhibitors provide significant survival and tolerability advantages. However, the optimal use of an aromatase inhibitor and tamoxifen remains to be established. To date, the intratumoral aromatase xenograft model has proved accurate in predicting the outcome of clinical trials. Utilizing this model, we performed long-term studies with tamoxifen and letrozole to determine time to disease progression with each of the treatment regimens. Aromatase-transfected MCF-7Ca human breast cancer cells were grown as tumor xenografts in female ovariectomized athymic nude mice in which androstenedione was converted to estrogen and stimulated tumor growth. When tumor volumes were approximately 300 mm3, the animals were grouped for continued supplementation with androstenedione only (control) or for treatment with letrozole 10 μg per day (long-term), tamoxifen 100 μg per day (long-term), letrozole alternating to tamoxifen (4-week rotation), tamoxifen alternating to letrozole (4-week rotation), or a combination of the two drugs. Tumors of control mice had doubled in volume in 3–4 weeks. In mice treated with tamoxifen and the combination, tumor doubling time was significantly shorter (16 and 18 weeks, respectively) than with letrozole (34 weeks). Furthermore, alternating letrozole and tamoxifen treatment every 4 weeks was less effective than letrozole alone. Tumors doubled in 17–18 weeks when the starting treatment was tamoxifen and in 22 weeks when the starting treatment was letrozole. Tumors progressing on tamoxifen remained sensitive to second-line therapy with letrozole (10 μg per day). However, when mice with letrozole-resistant tumors were switched to antiestrogen treatment, tumors did not respond to tamoxifen (100 μg per day) or faslodex (1 mg per day). This suggests that advanced breast cancers treated with letrozole may be insensitive to subsequent second-line hormonal agents. Thus, although letrozole was determined to be an effective second-line treatment option for tumors progressing on tamoxifen, antiestrogen therapy does not appear to be effective for tumors progressing on letrozole. However, response to second-line treatment was observed in a model where tumors that had progressed on letrozole were transplanted to new mice. These tumors had been allowed to grow in the presence of supplemented androstenedione but absence of letrozole. This suggests that resistance to letrozole may be reversible, allowing tumors to respond to subsequent antiestrogens and letrozole.  相似文献   

2.
Complete estrogen blockade remains under investigation as a means to optimize anti-estrogen therapy in breast cancer thus both the efficacy and end-organ toxicities are of interest with combinations. We hypothesized that a steroidal aromatase inhibitor (AI) atamestane (ATA) alone, and in combination with the anti-estrogens tamoxifen (TAM) or toremifene (TOR) would have beneficial effects in ovariectomized (OVX) rats on key end-organ functions including bone and lipid metabolism and on the endometrium. Significant positive effects on bone were noted with ATA, TOR, TAM, ATA + TOR, or ATA + TAM. TOR, TAM, ATA + TOR, or ATA + TAM caused significant decreases in serum cholesterol and low-density lipoprotein cholesterol whereas ATA had no effect. Uterine weight and epithelium lining height were not increased by ATA but were by TOR and TAM. No significant differences were found in the key parameters outlined above between OVX rats given TOR and ATA + TOR, or TAM and ATA + TAM. Our data show that ATA in combination with TOR or TAM is equivalent to TOR or TAM alone in terms of end-organ effects within a range of clinically relevant doses. Further studies of combinations of AIs with anti-estrogens on end-organ function are merited.  相似文献   

3.
While hormone-dependent, mammary tumors induced with carcinogens (DMBA or NMU) in intact rats have been used extensively for studying aromatase inhibitors, there is currently no suitable model to investigate their effects in human breast cancers in vivo. While hormone responsive tumors can be formed in the athymic mouse using human breast carcinoma MCF-7 cells, due to the low ovarian estrogen production, tumor growth is induced with estradiol supplementation. Thus, this model is unsuitable for studies of aromatase inhibitors. We have induced tumors without the need for estrogen supplementation by co-inoculating MCF-7 cells with Matrigel, a basement membrane preparation, into intact athymic mice. In one experiment, 45 days after inocubation, mice were assigned to the control group or 4-hydroxyandrostenedione (4-OHA) (1 mg/day s.c.) treatment for 52 days. Tumor volumes in the control mice increased 672%, whereas tumor volumes in the treated mice did not change significantly (178.9 ± 16.2 to 336.6 ± 120 mm3). In the second experiment, 55 days after inoculation, groups of mice were treated with the antiestrogen, tamoxifen (5 μg/day s.c.) or vehicle (controls). Tumor volumes in the control mice increased 325% in 58 days, whereas there was no significant change in tumor volume in the tamoxifen treated group (338.8 ± 55.3 to 330.6 ± 84.9 mm3). The results suggest that (1) the tumors resulting from MCF-7 cells co-inoculated with Matrigel are estrogen-dependent and (2) tamoxifen and 4-OHA were effective in suppressing growth of these tumors. The results suggest that this model should be useful for evaluating the effects of aromatase inhibitors and for comparing breast cancer treatments.  相似文献   

4.
5.
6.
Mueck AO  Seeger H  Huober J 《Life sciences》2004,75(10):1205-1210
2-Methoxyestradiol (2ME) is an endogenous estradiol metabolite, which acts antiproliferative in various tumor cell lines independent of the hormone receptor status. We investigated whether combinations of 2ME with various chemotherapeutic or endocrine compounds may result in an additive effect on the proliferation of human breast cancer cells. The breast cancer cell lines MCF-7 (receptor-positive), BM (receptor-negative) and a MCF-7 line transfected with the aromatase gene were used. All cell lines were incubated in the concentration range of 0.8 microM to 25 microM with 2ME alone and in equimolar combinations with the following compounds: epirubicine, daunorubicine, paclitaxel, docetaxel, carboplatin, vinorelbine, 5-fluorouracil, mafosfamide and 4-OH tamoxifen. The effect of letrozole and 2ME alone and in equimolar combinations was tested in the concentration range of 0.6 to 1 microM. Proliferation was measured after 4 days using the ATP-chemosensitivity test. In MCF-7 cells 2ME in combination with 4OH-tamoxifen, epirubicine, docetaxel, 5-fluoprouracil, mafosfamide and carboplatin led to an additive effect. In BM cells only 2ME combined with 4OH-tamoxifen, daunorubicine and mafosfamide showed an additive action. Both letrozole and 2ME were nearly similar effective in inhibition of the aromatase gene. Here no additive effect was found. 2ME displayed antiproliferative actions in various human breast cancer cells. In addition 2ME was able to increase the antiproliferative property of certain antihormones and cytostatic substances. Furthermore 2ME exhibits a similar property as compared to letrozole in inhibiting the aromatase activity. Since 2ME was well tolerated in a recently conducted phase II trial in patients with refractory metastatic breast cancer, the combination of 2ME with chemotherapeutics or antihormones may offer a new clinically relevant treatment regimen.  相似文献   

7.
Aromatase and breast cancer   总被引:2,自引:0,他引:2  
  相似文献   

8.
The agents used for endocrine therapy in patients with breast cancer have changed markedly over the past decade. Tamoxifen remains the anti-oestrogen of choice, but could be replaced by the oestrogen receptor down-regulator ICI 182780 or by the fixed ring triphenylethylene arzoxifene (previously SERM III) soon. Whilst aminoglutethimide and 4-OH androstenedione were the aromatase inhibitors of choice, they have been replaced by non-steroidal (anastrozole and letrozole) and steroidal (exemestane) inhibitors of high potency and low side effect profile. Previously, often used treatments such as progestogens (megestrol acetate and medroxyprogesterone acetate) and androgens are now rarely used or confined to fourth or fifth line treatments. The LHRH agonist, goserelin, remains the treatment of choice for pre-menopausal patients with advanced breast cancer although recent randomised trials indicate a response, time to progression and survival advantage for the combination of goserelin and tamoxifen compared with goserelin alone.

The newer treatments have led to questions concerning the optimum sequence of agents to use in advanced breast cancer and as neo-adjuvant and adjuvant therapy in relation to surgery. Two trials of anastrozole compared with tamoxifen and one trial of letrozole compared with tamoxifen indicate that the new triazole aromatase inhibitors have a significant advantage over the anti-oestrogen with respect to time to progression and survival. Similarly, triazole aromatase inhibitors give faster and more complete responses compared with tamoxifen when used in post-menopausal women before surgery.

Major research questions remain with respect to the aromatase inhibitors used as adjuvant therapy. Anastrozole is being tested alone or in combination with tamoxifen compared with tamoxifen in the ‘so-called’ ATAC trial. Over 9000 patients have been randomised to this important study: the results will be available late-2001. A similar study comparing letrozole and tamoxifen started recently under the auspices of the Breast International Group. Importantly, this trial is also comparing the sequence of tamoxifen followed by letrozole (or vice versa). A similar trial of exemestane given after 2–3 years of tamoxifen compared with 5 years of tamoxifen is recruiting well as is a study comparing letrozole (or placebo) for 5 years after 5 years of adjuvant tamoxifen. These studies may show that aromatase inhibitors are superior to tamoxifen or that a sequence is preferable.

ICI 182780 causes complete oestrogen receptor down-regulation leading to a the lack of agonist activity of the drug. Two trials of ICI 182780 compared with anastrozole for advanced disease will report later this year and a comparison with tamoxifen next year. Arzoxifene (SERM III) is being tested against tamoxifen. These studies are likely to result in new anti-oestrogens being introduced into the clinic.

Most of our endocrine treatments deprived the tumour cell of oestradiol. In vitro experiments with MCF-7 cells indicate that tumour cells can adapt and then grow in response to low oestrogen concentrations in the tissue—culture medium. Importantly, the cells were shown to apoptose in response to high oestrogen concentrations. A recent clinical trial has demonstrated a high response rate to stilboestrol given after a median of four previous oestrogen depriving endocrine therapies. These data and the newer treatments available indicate a need to re-think our general approach to endocrine therapy and endocrine prevention.  相似文献   


9.
Shyu KG  Chang H  Isner JM 《Life sciences》2003,73(5):563-579
Vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) are essential for vascular integrity and development. The purpose of the study was to test the hypothesis that Ang1 will promote angiogenic response to VEGF in the spontaneous Watanabe heritable hypercholesterolemic (WHHL) rabbit model of acute hindlimb ischemia. Immediately after the ligation of the external iliac artery and the excision of the common and superficial femoral artery in one female WHHL rabbit, 250 microg of phVEGF(165) (n = 8), 500 microg of pAng1* (n = 8), or 250 microg of phVEGF(165) plus 500 microg of pAng1* (n = 8) was injected intramuscularly into the ischemic hindlimb muscles. Gross appearance of ischemic limb, collateral vessel formation and limb perfusion were assessed 30 days after treatment. The incidence of ischemic limb necrosis was higher in the animals treated by phVEGF(165) or by pAng1* than in those treated by phVEGF(165) plus pAng1* (100%, 75% and 14.3%, respectively; P = 0.002). Animals in the combination therapy group had a significantly higher calf blood pressure ratio at day 30 (VEGF plus Ang1* = 0.84 +/- 0.06; VEGF = 0.54 +/- 0.01; Ang1* = 0.59 +/- 0.05; P < 0.01). A combination therapy of VEGF plus Ang*1 had a significantly higher (P < 0.01) angiographic score than either therapy alone. Capillary density (P < 0.05) and capillary/muscle fiber ratio (P < 0.01) of the combination therapy group were also significantly higher than that of either therapy alone. In conclusion, Ang1 can potentiate the angiogenic response to VEGF in the hyperlipidemic rabbit model of acute hindlimb ischemia. Intramuscular administration of cytokines on revascularization of the ischemic hindlimb model of hyperlipidemic rabbit is feasible.  相似文献   

10.
Benign prostatic hyperplasia (BPH) is the most common neoplastic growth in men and is the most frequent cause of urinary flow obstruction at the bladder neck. In addition to the clear evidence in favor of the androgen dependency of BPH, the involvement of the stroma, stromal-epithelial interaction and the role of estrogens have gained much interest in connection with the pathogenesis of this disease. For this reason, specific aromatase inhibitors such as atamestane (1-methyl-1,4-androstadiene-3,17-dione) have recently attracted attention due to their potential use in the treatment of BPH. The pharmacological action of atamestane as a new competitive and irreversible inhibitor of estrogen biosynthesis has been evaluated in mice, rats, rabbits, dogs, monkeys and in man. In all species tested so far, atamestane lacks other intrinsic hormonal or antihormonal activities and shows no inhibition of other cytochrome-P450 dependent enzymes of adrenal steroidogenesis. However, it inhibits the estrogen-related negative feed-back. The extent and consequence of the induced counter-regulation of the pituitary-hypothalamic axis show major sex- and species-specific differences. In BPH animal models, atamestane is highly effective in inhibiting estrogen-induced hyperplastic changes in the fibromuscular stroma of the prostate in androstenedione-treated dogs and monkeys. In male volunteers and BPH patients, atamestane induces an expected dose-dependent reduction of serum estrogen concentrations with slight increases in androgen level. In conclusion, all available results indicate that atamestane is a selective (no inhibition of adrenal function), pure (= specific—no endocrine side-effects) and highly effective steroidal aromatase inhibitor with excellent safety profile. Based on our preliminary results aromatase inhibitors seem to be promising compounds for the treatment of BPH.  相似文献   

11.
Ospemifene is a new selective estrogen receptor modulator (SERM) that is being developed for the treatment of urogenital atrophy and osteoporosis. Similarly to other SERMs, ospemifene exhibits antiestrogenic effects in breast tissue, which led to the hypothesis that it may be a potential breast cancer chemopreventive agent. We first assessed the ability of ospemifene, compared to tamoxifen and raloxifene, to prevent dimethylbenzanthracene (DMBA)-induced mammary tumors in female Sencar mice. Ospemifene (N = 18), tamoxifen (N = 20) and raloxifene (N = 17), each dosed at 50 mg/kg, were administered daily by oral gavage, in combination with 20 microg DMBA for the first 6 weeks. Control mice (N = 21) received vehicle plus DMBA only for the first 6 weeks. Daily treatment then continued for 37 weeks. As hypothesized, ospemifene greatly reduced the incidence of mammary carcinomas compared to control mice (p = 0.003), similar to tamoxifen (p = 0.0004); however, in the raloxifene group, no significant effect was seen in mammary tumor prevention (p = 0.20). A follow-up study comparing ospemifene (N = 20) to tamoxifen (N = 20) in the same model was then performed to confirm the results of the first study. The results of the follow-up study, which extended the treatment to 52 weeks, confirmed the results of our previous study, with ospemifene (p = 0.01) and tamoxifen (p = 0.004) significantly decreasing mammary carcinomas compared to controls. The results of these two studies suggest that women taking ospemifene for osteoporosis and/or urogenital atrophy may further benefit from ospemifene's breast cancer chemopreventive effects.  相似文献   

12.
Aromatase and its inhibitors   总被引:8,自引:0,他引:8  
Inhibitors of aromatase (estrogen synthetase) have been developed as treatment for postmenopausal breast cancer. Both steroidal substrate analogs, type I inhibitors, which inactivate the enzyme and non-steroidal competitive reversible, type II inhibitors, are now available. 4-hydroxyandrostenedione (4-OHA), the first selective aromatase inhibitor, has been shown to reduce serum estrogen concentrations and cause complete and partial responses in approximately 25% of patients with hormone responsive disease who have relapsed from previous endocrine treatment. Letrozole (CGS 20, 269) and anastrozole (ZN 1033) have been recently approved for treatment. Both suppress serum estrogen levels to the limit of assay detection. Letrozole has been shown to be significantly superior to megace in overall response rates and time to treatment failure, whereas anastrozole was found to improve survival in comparison to megace. Both were better tolerated than the latter. The potential of aromatase within the breast as a significant source of estrogen mediating tumor proliferation and which might determine the outcome of inhibitor treatment was explored. Using immunocytochemistry and in situ hybridization, aromatase and mRNAarom was detected mainly in the epithelial cells of the terminal ductal lobular units (TDLU) of the normal breast and also in breast tumor epithelial cells as well as some stromal cells. Increase in proliferation, measured by increased thymidine incorporation into DNA and by PCNA immunostaining in response to testosterone was observed in histocultures of breast cancer samples. This effect could be inhibited by 4-OHA and implies that intratumoral aromatase has functional significance. An intratumoral aromatase model in the ovariectomized nude mouse was developed which simulated the hormone responsive postmenopausal breast cancer patient. This model also allows evaluation of the efficacy of aromatase inhibitors and antiestrogens in tumors of estrogen receptor positive, human breast carcinoma cells transfected with the human aromatase gene. Thus, the cells synthesized estrogen which stimulated tumor formation. Both aromatase inhibitors and antiestrogens were effective in suppressing tumor growth in this model. However, letrozole was more effective than tamoxifen. When the aromatase inhibitors were combined with tamoxifen, tumor growth was suppressed to about the same extent as with the aromatase inhibitors alone. Thus, there was no additive or synergistic effects of combining tamoxifen with aromatase inhibitors. This suggests that sequential treatment with these agents is likely to be more beneficial to the patient in terms of longer response to treatment.  相似文献   

13.
The antitumor effect of exemestane (FCE 24304), an irreversible aromatase inhibitor, given alone or in combination with tamoxifen, was investigated in rats with 7, 12-dimethylbenzanthracene (DMBA)-induced mammary tumors. The compounds were given once daily, 6 days a week for 4 weeks. Exemestane, given at the dose of 20 mg/kg/day s.c., induced 26% complete (CR) and 18% partial (PR) tumor regressions, compared to 0% CR and 6% PR observed in controls. Tamoxifen, given at 1 mg/kg/day p.o., induced 16% CR and 13% PR. The combined treatment caused 41% CR and 16% PR, thus resulting in a higher antitumor effect than either single treatment. The apperance of new tumors was reduced by each single treatment and almost totally prevented by the combined treatment. Serum prolactin (PRL) levels, assayed 4 h after the last dose, were unchanged in the group treated with the combination, whereas tamoxifen alone caused a slight increase of serum PRL. These results indicate that estrogen deprivation through aromatase inhibition and estrogen receptor antagonism causes a better inhibition of DMBA-induced mammary tumors than either treatment modality alone.  相似文献   

14.
Endocrine therapy is widely accepted for the treatment of hormone receptor-positive breast cancer. However, in many cases eventually resistance will develop and tumor regrows. Combination therapy may be one way to resolve this problem. In the present study we investigated the effect of a combination of the widely used antiestrogen tamoxifen with the endogenous estradiol metabolite 2-methoxyestradiol (2-ME) on the proliferation of human estrogen receptor-positive and receptor-negative breast cancer cells.The receptor-positive cell line MCF-7 and the receptor-negative cell line BM were treated with 4-hydroxytamoxifen (4-OHTam) and 2-methoxyestradiol in the concentration range of 0.8-25 microM alone and equimolar combinations for 4 days. The proliferation of the cells was determined using the ATP-chemosensitivity test.4-Hydroxytamoxifen inhibited proliferation of MCF-7 and BM cells with IC(50) values of 31 and 10 microM, the corresponding figures for 2-methoxyestradiol were 52 and 8 microM. The combination showed IC(50) values of 6 microM and 4 microM.These results indicate that a combination of tamoxifen with 2-methoxyestradiol showed an additive inhibitory effect concerning the proliferation of estrogen receptor-positive and receptor-negative breast cancer cell lines. Thus a combination of these substances may allow ameliorating of adverse events of tamoxifen by reducing its concentrations and probably also drug resistance and should be tested in clinical trials.  相似文献   

15.
The effect of toremifene on NK-cells isolated from the spleen of NZB/NZW mice was studied in comparison to tamoxifen and estradiol. Unlike estradiol but like tamoxifen, toremifene did not influence the activity of NK-cells. Low doses (0.1 and 10.0 mg/kg) of toremifene did not suppress, but a high dose of toremifene and tamoxifen (50 mg/kg for 6 weeks) suppressed the stimulating effect of human interferon alpha on the cells.  相似文献   

16.
Currently available radioimmunoassay methods for estradiol in serum lack sufficient sensitivity and precision to monitor estradiol levels in patients placed on third generation aromatase inhibitors. We recently validated a gas chromatography/tandem mass spectrometry assay (GC/MS/MS) for estradiol and determined estrogen levels in normal post-menopausal women and in women with breast cancer before and during administration of aromatase inhibitors. Validation of the GC/MS/MS assay in human plasma and human serum included determination of assay sensitivity (<0.63 pg/ml), precision (all CVs less than 17.8%), recovery (98-103%), and linearity of recovery (R=0.998). Levels of estradiol were lower when assayed by GC/MS/MS compared to RIA under all conditions (7.26+/-4.82 pg/ml versus 11.9+12.0 pg/ml in normal post-menopausal women; 5.88+/-3.43 pg/ml versus 13.8+/-7.5 pg/ml in breast cancer patients prior to treatment; and<0.63 pg/ml versus 5.8+/-4.1 pg/ml during aromatase inhibitor therapy). Fifty-five women treated either with atamestane/toremiphene or letrozole/placebo were monitored for estradiol levels at 4, 8 and 12 weeks of therapy. The mean levels of estradiol during aromatase inhibitor therapy was 5.8+/-4.1 pg/ml as measured by RIA and <0.63 pg/ml by GC/MS/MS. The degree of suppression with the aromatase inhibitors as detected by RIA was 58% versus >89% by GC/MS. These results suggest that most RIA methods detect cross-reacting estrogen metabolites and yield higher measured levels than GC/MS/MS. Several pharmacological and clinical considerations suggest that GC/MS/MS should become the preferred method for monitoring aromatase inhibitor therapy.  相似文献   

17.
Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole. This combination significantly increased inhibition of aromatase activity of AC-1 cells when compared to letrozole alone. Treatment of 1nM letrozole in combination with 1μM or 10μM ZA resulted in an additive drug interaction on inhibition of cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine residues. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1μM and 10μM ZA on cell viability following treatment for 72h, as shown by a shift to the right in the estradiol dose-response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability.  相似文献   

18.
The present studies evaluated the direct effects of the presence of human cyclooxygenase-2 (Cox-2) on gene expression of specific promoter regions of the P450 Cyp19 enzyme aromatase enzyme and its product, estradiol, in Cox-2 null estrogen-dependent MCF-7 breast tumor cells and in a stable clone of MCF-7 cells containing transfected Cox-2 cDNA, designated as MCF-7/Cox-2 Clone 10. Clone 10 human breast tumor cells have significantly increased gene expression of total mRNA of the P450 Cyp19 enzyme aromatase, with high levels of gene expression of specific aromatase promoter (p) regions pII, pI.3, and p1.7, with no significant change in mRNA levels of p1.4. Clone 10 human breast tumor cells produced significantly increased amounts of both prostaglandin E2 (PGE2) derived from Cox-2 enzyme activity and estradiol derived from aromatase enzyme activity (p<0.01), compared to MCF-7/vector control cells. The greatest inhibition of PGE2 or estradiol production was observed by the combination of the selective Cox-2 inhibitor celecoxib (25 microM) and the aromatase inhibitor, formestane (10nM) (p<0.01). The greatest anti-proliferative effect in Cox-2 null MCF-7/vector control cells was observed with the combination of 25 microM celecoxib and 10nM formestane but not with 10 microM celecoxib, suggesting that there are Cox-2-independent mechanisms involved in the anti-proliferative effect of this agent at doses greater than 10 microM. Celecoxib (25 microM) also significantly inhibited proliferation of MCF-7/Cox-2 Clone 10 human breast tumor cells, with no further anti-proliferative activity with the addition of 10 nM formestane observed at either 24 or 48 h of treatment. These studies demonstrate that Cox-2 directly regulates gene expression of specific aromatase promoter regions and regulates aromatase enzyme activity. Agents that inhibit Cox-2 or block the biological effects of PGE2 may be useful in significantly limiting aromatase activity and proliferation of human breast tumor cells regardless of the presence of Cox-2. In addition, the unique human breast tumor cell model used in these studies may be a useful tool in identifying the spectrum of activities of agents that block the biological effects of PGE2 and estradiol.  相似文献   

19.
Two third-generation aromatase inhibitors, letrozole and anastrozole, and the antiestrogen tamoxifen, were compared for growth-inhibiting activity in two estrogen receptor (ER)-positive aromatase-overexpressing human breast cancer cell lines, MCF-7aro and T-47Daro. Inhibition of hormone (1 nM testosterone)-stimulated proliferation was evaluated in both monolayer cultures and in three-dimensional spheroid cultures. Letrozole and anastrozole were also compared for effectiveness of aromatase inhibition, and relative affinity for aromatase, under both monolayer and spheroid growth conditions. Letrozole was an effective inhibitor of MCF-7aro monolayer cell proliferation, with an estimated 50% inhibitory concentration (IC50) of 50-100 nM, whereas an IC50 was not reached with anastrozole at any concentration tested (100-500 nM). An IC50 of tamoxifen was 1000 nM. Proliferation of T-47Daro monolayer cells was more sensitive to inhibition by all three agents; as with MCF-7aro cells, letrozole was the most effective inhibitor. MCF-7aro spheroids were slightly less sensitive than monolayer cells proliferation-inhibiting effects of letrozole (IC50 about 200 nM), and there was no significant inhibition with 100-200 nM anastrozole or 200-1000 nM tamoxifen. Letrozole and anastrozole significantly inhibited T-47Daro spheroid cell proliferation, at 15-25 and 50 nM, respectively, consistent with the greater sensitivity of T-47Daro monolayer cells to inhibition of proliferation by these agents. Tamoxifen failed to significantly inhibit T-47Daro spheroid cell proliferation over a 100-500 nM concentration range. Determination of aromatase inhibition in monolayers of both cell lines by a direct-access microsomal assay and an intact-cell assay revealed that letrozole was more active than anastrozole in monolayers of both cell lines and in both assays. In MCF-7aro spheroids following cell lysis, only letrozole significantly inhibited aromatase activity, supporting the conclusion that letrozole binds stronger to aromatase than anastrozole does. Our results demonstrate that MCF-7aro and T-47Daro spheroids could be a suitable model for evaluation of growth-inhibitory effects of agents used in hormonal therapy of breast cancer.  相似文献   

20.
The feasibility of utilizing rainbow trout, Oncorhynchus mykiss, as an alternative model for studying the inhibition of aromatase (CYP 19) was investigated. The suppression of estrogen-dependent tumors by aromatase inhibitors has been important in the treatment of breast cancer. Estrogens, estrogen precursors and xenoestrogens have been found to promote liver cancer in the trout model. A steroid, 4-hydroxy-4-androstene-3,17-dione (4-OHA), and non-steroids, aminoglutethimide (AG) and Letrozole (CGS 20267), all of which are known aromatase inhibitors in rats and humans, were examined in vitro for activity in trout ovarian microsomes. Aromatase activity was quantified as the release of 3H2O from the conversion of [3H]-4-androstene-3,17-dione to 17beta-estradiol and estrone. Trout ovarian microsomes exhibited activity between 39-60 fmol mg(-1) min(-1) with a calculated Vmax of 71.1 fmol mg(-1) min(-1) when incubated at 25 degrees C with 200 nM 4-androstene-3,17-dione (K(M) = 435 nM). Significant inhibition by 4-OHA up to 80% was seen at 1.5 microM. At 2000 microM, AG decreased aromatase activity by up to 82%. Letrozole reduced aromatase activity a maximum of 90% in a dose-dependent manner, but the Ki (2.3 microM) was 1000-fold higher than reported in human trials. Indole-3-carbinol and some of its derivatives, two DDE isomers and four flavones (except alpha-naphthoflavone) at 1000 microM did not significantly inhibit aromatase in vitro. Letrozole and clotrimazole, fed to juvenile rainbow trout at doses up to 1000 ppm for 2 weeks, were not effective in suppressing dehydroepiandrosterone (DHEA) induced increases in vitellogenin and 17beta-estradiol levels. These results document that trout aromatase is sensitive to inhibition in vitro by known inhibitors of the mammalian enzyme. The mechanism(s) for lack of inhibition in vivo is currently unknown and must be further investigated in order to develop a trout model for studying the role of aromatase in carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号