首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of formulation additives, e.g. preservative, antioxidant and viscolizing agents on in vitro transcorneal permeation of ketorolac tromethamine from 0.5%(w/v) aqueous drop was studied using goat cornea. Permeation characteristics of drug, from selected formulations, through excised rabbit cornea were also evaluated. Aqueous solution of ketorolac tromethamine (0.5% w/v), pH 6.5 or 7.0 having ionic strength 0.2, was prepared. To this solution perservatives either alone or in combination with other additives were added to have drops of various composition. Permeation studies with goat cornea showed maximum permeation of ketorolac tromethamine from formulation containing benzalkonium chloride and disodium edetate. Increase in viscosity of drop resulted in decreased permeation of drug. Formulation containing benzalkonium chloride and disodium edetate also increased permeation of drug through rabbit cornea. Cumulative permeation of drug through rabbit cornea was found to be 2.3-2.4 fold higher than that observed with goat cornea.  相似文献   

2.
The purpose of this research was to optimize the formulation factors for maximum in vitro permeation of gatifloxacin from aqueous drops through excised goat cornea and to evaluate the permeation characteristics of drug from selected marketed eyedrop formulations. Permeation studies were conducted by putting 1 mL of formulation on the cornea (0.67 cm2) fixed between the donor and receptor compartments of an all-glass modified Franz diffusion cell and measuring gatifloxacin concentration in the receptor (containing normal saline under stirring) by spectrophotometry at 291.5 nm, after 120 minutes. Raising the drug concentration of the drops increased the drug permeation but decreased the percent permeation and the in vitro ocular availability. Raising the pH of the formulation from pH 5 to 7.2 increased both the drug permeation and the in vitro ocular availability. Eyedrops containing benzalkonium chloride (BAK; 0.01% wt/vol) and disodium edetate (EDTA; 0.01% wt/vol) showed maximum permeation, followed by Zymar, BAK (0.01% wt/vol), Gatilox, Gatiquin, and Gate (statistically significantP<.05 compared with control). In vitro titration of the formulations with 0.1N NaOH indicated the presence of a buffer in Zymar (pH 6) and Gate (pH 5.8), which may cause irritation and induce lacrimation, resulting in reduced ocular availability in vivo. Thus, formulation with BAK and EDTA, which is unbuffered, has a better likelihood of being absorbed in vivo. The BAK-EDTA formulation significantly (P<.05) increased the permeation of gatifloxacin through paired excised corneas of goat, sheep, and buffalo, compared with the control formulation. The goat cornea showed the greatest increase in permeation, followed by the sheep and buffalo corneas. Published: July 7, 2006  相似文献   

3.
Nepafenac is a nonsteroidal anti-inflammatory drug (NSAID), currently only available as 0.1% ophthalmic suspension (Nevanac®). This study utilized hydroxypropyl-β-cyclodextrin (HPBCD) to increase the water solubility and trans-corneal permeation of nepafenac. The nepafenac-HPBCD complexation in the liquid and solid states were confirmed by phase solubility, differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR) analyses. Nepafenac 0.1% ophthalmic solution was formulated using HPBCD (same pH and osmolality as that of Nevanac®) and pig eye trans-corneal permeation was studied versus Nevanac®. Furthermore, nepafenac content in cornea, sclera, iris, lens, aqueous humor, choroid, ciliary body, retina, and vitreous humor was studied in a continuous isolated pig eye perfusion model in comparison to the suspension and Nevanac®. Permeation studies using porcine corneas revealed that the solution formulation had a permeation rate 18 times higher than Nevanac®. Furthermore, the solution had 11 times higher corneal retention than Nevanac®. Drug distribution studies using porcine eyes revealed that the solution formulation enables detectable levels in various ocular tissues while the drug was undetectable by Nevanac®. The ocular solution formulation had a significantly higher drug concentration in the cornea compared to the suspension or Nevanac®.  相似文献   

4.
The purpose of this investigation was to evaluate the effect of formulation factors on in vitro permeation of moxifloxacin from aqueous drop through freshly excised goat, sheep, and buffalo corneas. Aqueous isotonic ophthalmic solutions of moxifloxacin hydrochloride of different concentrations (pH 7.2) or 0.5% (wt/vol) solutions of different pH or 0.5% solutions (pH 7.2) containing different preservatives were made. Permeation characteristics of drug were evaluated by putting 1 mL formulation on freshly excised cornea (0.50 cm2) fixed between donor and receptor compartments of an all-glass modified Franz diffusion cell and measuring the drug permeated in the receptor (containing 10 mL bicarbonate ringer at 37°C under stirring) by spectrophotometry at 291 nm, after 120 minutes. Statistical analysis was done by one-way analysis of variance (ANOVA) followed by Dunnett’s test. Increase in drug concentration in the formulation resulted in an increase in the quantity permeated but a decrease in percentage permeation. Increase in pH of the solution from 5.5 to 7.2 increased drug permeation, indicating pH-dependent transport. Compared with control formulation, moxifloxacin 0.5% (wt/vol) solution (pH 7.2) containing disodium edetate (EDTA) (0.01% wt/vol) produced significantly (P<.05) higher permeation with all the corneas. Formulation with benzyl alcohol significantly (P<.05) increased permeation with buffalo cornea compared with its control. Presence of benzalkonium chloride (BAK) (0.01% wt/vol) and EDTA (0.01% wt/vol) in the formulation increased permeation to the maximum with all the corneas. The results suggest that moxifloxacin 0.5% ophthalmic solution (pH 7.2) containing BAK (0.01%) and EDTA (0.01%) provides increased in vitro ocular availability through goat, sheep, and buffalo corneas. Published: February 10, 2006 Formerly College of Pharmacy, University of Delhi, Pushp Vihar, Sector III, New Delhi-110017, India  相似文献   

5.
Bilosomes were developed in order to investigate their efficacy as nanocarriers for transdermal delivery of Tizanidine HCl (TZN), a skeletal muscle relaxant with low oral bioavailability. Full factorial experimental design consisting of 27 combinations was generated to study the effects of surfactant type, surfactant-to-cholesterol ratio and the amount of bile salt on the entrapment efficiency (EE), the vesicle size (VS) and in vitro dissolution of the TZN-loaded bilosomes. The permeation through the stratum cornea was optimized with the vertical diffusion assembly using excised rat skin. The permeation parameters of the selected bilosomes were compared to the unformulated drug and it was shown that TZN-B24 exhibited the highest enhancement ratio (ER?=?8.8).The optimal formula (TZN-B24) consisting of span 60 in a ratio with cholesterol of 1:1 and 20?mg of bile salt was obtained by employing the desirability function of Design-Expert® software. The mathematical model used for the optimization was validated by comparing the predicted values of the EE (82.3%) and the VS (165.8?nm) with the experimental values of EE?=?84.42% and of VS?=?161.95?nm. TZN-B24 displayed high zeta potential which contributed to its good stability. It was evident from the results of this study that incorporating TZN in bilosomes improved significantly its permeation through the skin barrier and thus bilosomes can offer a potential nanoplatform using the transdermal route to improve the bioavailability of the drug.  相似文献   

6.
The objective of present study was to prepare thiolated pectin nanoparticles and to evaluate them for ocular delivery. Thiolated pectin nanoparticles were prepared by ionotropic-gelation technique using magnesium chloride as the ionic cross-linker and timolol maleate as the model drug. The results revealed that increasing the concentration of magnesium chloride results in significant increase in particle size, while % entrapment is decreased significantly by increase in the concentration of thiolated pectin. The optimal formulation having particle size of 237 nm and % entrapment of 94.6% was obtained at concentrations of thiolated pectin - 0.01% (w/v) and magnesium chloride - 0.01% (w/v). On comparative evaluation, thiolated pectin nanoparticulate formulation provided significantly higher ex vivo corneal permeation of timolol maleate across the excised goat cornea than the conventional aqueous solution.  相似文献   

7.
The purpose of this study was to prepare and characterize an ocular effective prolonged-release liposomal hydrogel formulation containing ciprofloxacin. Reverse-phase evaporation was used for preparation of liposomes consisting of soybean phosphatidylcholine (PC) and cholesterol (CH). The effect of PC/CH molar ratio on the percentage drug encapsulation was investigated. The effect of additives such as stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively, were studied. Morphology, mean size, encapsulation efficiency, and in vitro release of ciprofloxacin from liposomes were evaluated. For hydrogel preparation, Carbopol 940 was applied. In vitro transcorneal permeation through excised albino rabbit cornea was also determined. Optimal encapsulation efficiency of 73.04 ± 3.06% was obtained from liposomes formulated with PC/CH at molar ratio of 5:3 and by increasing CH content above this limit, the encapsulation decreased. Positively charged liposomes showed superior entrapment efficiency (82.01 ± 0.52) over the negatively charged and the neutral liposomes. Hydrogel containing liposomes with lipid content PC, CH, and SA in molar ratio 5:3:1, respectively, showed the best release and transcorneal permeation with the percentage permeation of 30.6%. These results suggest that the degree of encapsulation of ciprofloxacin into liposomes and prolonged in vitro release depend on composition of the vesicles. In addition, the polymer hydrogel used in preparation ensure steady and prolonged transcorneal permeation. In conclusion, ciprofloxacin liposomal hydrogel is a suitable delivery system for improving the ocular bioavailability of ciprofloxacin.  相似文献   

8.
Ofloxacin, available as ophthalmic solution, has two major problems: first, it needs frequent administration every 4 hours or even every 1 hour to treat severe eye infection; second, there is formation of white crystalline deposit on cornea due to its pH-dependent solubility, which is very low at pH of corneal fluid. In order to provide a solution to previous problems, ofloxacin in this study is prepared as topically effective in situ thermosensitive prolonged release liposomal hydrogel. Two preparation procedures were carried out, leading to the formation of multilamellar vesicles (MLVs) and reverse-phase evaporation vesicles (REVs) at pH 7.4. Effects of method of preparation, lipid content, and charge inducers on encapsulation efficiency were studied. For the preparation of in situ thermosensitive hydrogel, chitosan/β-glycerophosphate system was synthesized and used as carrier for ofloxacin liposomes. The effect of addition of liposomes on gelation temperature, gelation time, and rheological behaviors of the hydrogel were evaluated. In vitro transcorneal permeation was also determined. MLVs entrapped greater amount of ofloxacin than REVs liposomes at pH 7.4; drug loading was increased by including charge-inducing agent and by increasing cholesterol content until a certain limit. The gelation time was decreased by the addition of liposomes into the hydrogel. The prepared liposomal hydrogel enhances the transcorneal permeation sevenfold more than the aqueous solution. These results suggested that the in situ thermosensitive ofloxacin liposomal hydrogel ensures steady and prolonged transcorneal permeation, which improves the ocular bioavailability, minimizes the need for frequent administration, and decreases the ocular side effect of ofloxacin.  相似文献   

9.
The drug concentration inside multidrug-resistant cells is the outcome of competition between the active export of drugs by drug efflux pumps, such as P-glycoprotein (Pgp), and the passive permeation of drugs across the plasma membrane. Thus, reversal of multidrug resistance (MDR) can occur either by inhibition of the efflux pumps or by acceleration of the drug permeation. Among the hundreds of established modulators of Pgp-mediated MDR, there are numerous surface-active agents potentially capable of accelerating drug transbilayer movement. The aim of the present study was to determine whether these agents modulate MDR by interfering with the active efflux of drugs or by allowing for accelerated passive permeation across the plasma membrane. Whereas Pluronic P85, Tween-20, Triton X-100 and Cremophor EL modulated MDR by inhibition of Pgp-mediated efflux, with no appreciable effect on transbilayer movement of drugs, the anesthetics chloroform, benzyl alcohol, diethyl ether and propofol modulated MDR by accelerating transbilayer movement of drugs, with no concomitant inhibition of Pgp-mediated efflux. At higher concentrations than those required for modulation, the anesthetics accelerated the passive permeation to such an extent that it was not possible to estimate Pgp activity. The capacity of the surface-active agents to accelerate passive drug transbilayer movement was not correlated with their fluidizing characteristics, measured as fluorescence anisotropy of 1-(4-trimethylammonium)-6-phenyl-1,3,5-hexatriene. This compound is located among the headgroups of the phospholipids and does not reflect the fluidity in the lipid core of the membranes where the limiting step of drug permeation, namely drug flip-flop, occurs.  相似文献   

10.
The purposes of this project are to enhance the trans-membrane penetration of Δ8-Tetrahydrocannabinol (Δ8-THC) and to study the effect of various lipid based systems in delivering the compound, non-invasively, to anterior and posterior ocular chambers. Solid lipid nanoparticles (SLNs), fast gelling films were manufactured using high pressure homogenization and melt cast techniques, respectively. The formulations were characterized for drug content, entrapment efficiency, particle size and subsequently evaluated in vitro for trans-corneal permeation. In vivo, the drug disposition was tested via topical administration in albino rabbits. The eye globes were enucleated at the end of experiment and tissues were analyzed for drug content. All formulations showed favorable physicochemical characteristics in terms of particle size, entrapment efficiency, and drug content. In vitro, the formulations exhibited a transcorneal flux that depended on the formulation’s drug load. An increase in drug load from 0.1 to 0.75% resulted in 12- to16-folds increase in permeation. In vivo, the film was able to deliver THC to all the tissues with high accumulations in cornea and sclera. The SLNs showed a greater ability in delivering THC to all the tissues, at a significantly lower drug load, due to their colloidal size range, which in turn enhanced corneal epithelial membrane penetration. The topical formulations evaluated in the present study were able to successfully deliver Δ8-THC in therapeutically meaningful concentrations (EC50 values for CB1: 6 nM and CB2: 0.4 nM) to all ocular tissues except the vitreous humor, with pronounced tissue penetration achieved using SLNs as a Δ8-THC delivery vehicle.  相似文献   

11.
Onychomycosis is associated with the cutaneous fungal infection of the nail and the nail folds (skin surrounding the nail). It is therefore important to target drug delivery into the nail folds along with nail plate and the nail bed. Systematic and strategic selection of the penetration enhancers specific for the skin and the nail is discussed. Twelve penetration enhancers were screened for their ability to improve solubility, in vitro nail penetration, in vitro skin permeation, and in vitro skin penetration of the antifungal drug ciclopirox olamine. In contrast to transdermal drug delivery, the main selection criteria for skin penetration enhancer in topical drug delivery were increased drug accumulation in the epidermis and minimal permeation across the skin. Thiourea improved the solubility and nail penetration of ciclopirox olamine. It also showed enhancement in the transungual diffusion of the drug. Propylene glycol showed a 12-fold increase in solubility and 3-fold increase in epidermal accumulation of ciclopirox olamine, while minimizing the transdermal movement of the drug. Thiourea was the selected nail permeation enhancer and propylene glycol was the selected skin penetration enhancer of ciclopirox olamine. A combination of the selected enhancers was also explored for its effect on drug delivery to the nail and nail folds. The enhancer combination reduced the penetration of ciclopirox in the skin and also the permeation through the nail. The proposed preformulation strategy helps to select appropriate enhancers for optimum topical delivery and paves way towards an efficient topical formulation for passive transungual drug delivery.  相似文献   

12.
In transdermal drug delivery systems, it is always a challenge to achieve stable and prolonged high permeation rates across the skin since the concentrations of the drug dissolved in the matrix have to be high in order to maintain zero order release kinetics. Several attempts have been reported to improve the permeability of poorly soluble drug compounds using supersaturated systems. However, due to thermodynamic challenges, there was a high tendency for the drug to nucleate immediately after formulating or even during storage. The present study focuses on the efficiency of nanoparticles and influence of different concentrations of solubilizer such as vitamin E TPGS (d-a-tocopheryl polyethylene glycol 1000 succinate) to improve the permeation rate through the skin. Effects of several formulation factors were studied on the nanosuspension systems using ibuprofen as a model drug. The overall permeation enhancement process through the skin was influenced mostly by the solubilizer and also by the size of nanoparticles. The gel formulation developed with vitamin E TPGS + HPMC nanosuspension, consequently represent a promising approach aiming to improve the permeability performance of a poorly water soluble drug candidate.KEY WORDS: dermal drug delivery, human skin, nanosuspension, permeation rate, porcine skin, vitamin E TPGS  相似文献   

13.
The purpose of the study was to investigate the effect of hydroxypropyl beta cyclodextrin (HPβCD) on aqueous solubility, stability, and in vitro corneal permeation of acyl ester prodrugs of ganciclovir (GCV). Aqueous solubility and stability of acyl ester prodrugs of Ganciclovir (GCV) were evaluated in pH 7.4 isotonic phosphate buffer solution (IPBS) in the presence and absence of HPβCD. Butyryl cholinesterase-mediated enzymatic hydrolysis of the GCV prodrugs was studied using various percentage w/v HPβCD. In vitro corneal permeation of GCV and its prodrugs (with and without 5% HPβCD) across isolated rabbit cornea was studied using side-by-side diffusion cells. HPβCD-prodrug complexation was of the AL type with values for complexation constants ranging between 12 and 108 M−1. Considerable improvement in chemical and enzymatic stability of the GCV prodrugs was observed in the presence of HPβCD. The stabilizing effect of HPβCD was found to depend on the degree of complexation and the degradation rate of prodrug within the complex. Five percent w/v HPβCD was found to enhance the corneal permeation of only the most lipophilic prodrug GCV dibutyrate (2.5-fold compared with 0% HPβCD). All other prodrugs showed little or no difference in transport in the presence of 5% w/v HPβCD. Agitation in the donor chamber largely influenced the transport kinetics of GCV dibutyrate across cornea. Results indicate the presence of an unstirred aqueous diffusion layer at the corneal surface that restricts the transport of the highly lipophilic GCV dibutyrate prodrug. HPβCD improves corneal permeation by solubilizing the hydrophobic prodrug and delivering it across the mucin layer at the corneal surface.  相似文献   

14.
The presented study describes the development of a membrane permeation non-sink dissolution method that can provide analysis of complete drug speciation and emulate the in vivo performance of poorly water-soluble Biopharmaceutical Classification System class II compounds. The designed membrane permeation methodology permits evaluation of free/dissolved/unbound drug from amorphous solid dispersion formulations with the use of a two-cell apparatus, biorelevant dissolution media, and a biomimetic polymer membrane. It offers insight into oral drug dissolution, permeation, and absorption. Amorphous solid dispersions of felodipine were prepared by hot melt extrusion and spray drying techniques and evaluated for in vitro performance. Prior to ranking performance of extruded and spray-dried felodipine solid dispersions, optimization of the dissolution methodology was performed for parameters such as agitation rate, membrane type, and membrane pore size. The particle size and zeta potential were analyzed during dissolution experiments to understand drug/polymer speciation and supersaturation sustainment of felodipine solid dispersions. Bland-Altman analysis was performed to measure the agreement or equivalence between dissolution profiles acquired using polymer membranes and porcine intestines and to establish the biomimetic nature of the treated polymer membranes. The utility of the membrane permeation dissolution methodology is seen during the evaluation of felodipine solid dispersions produced by spray drying and hot melt extrusion. The membrane permeation dissolution methodology can suggest formulation performance and be employed as a screening tool for selection of candidates to move forward to pharmacokinetic studies. Furthermore, the presented model is a cost-effective technique.  相似文献   

15.
张韻慧  王春杰  晋兴华  张旺  张崧 《生物磁学》2013,(34):6619-6622,6706
目的:通过研究不同促透剂对吲哚关辛水凝胶贴剂透皮性能的影响,遴选在特定栽药剂量时具有最佳促透效果的促透剂,并与市售贴剂进行比较,对吲哚美辛水凝胶贴剂的体外透皮性能进行评价。方法:采用改良Franz透皮扩散池,以离体小鼠背部皮肤为透皮屏障,在最佳载药量选用不同浓度的氮酮、油酸、丙二醇以及三者组成的二元或三元组合为促透剂,在规定时间点测定吲哚美辛的累积透过百分率以及单位面积累积透过量。结果:与空白对照组相比,当氮酮与油酸单独应用时,二者均没有明显的促透作用;当选用二元促透剂联合应用时,油酸与丙二醇联用能够明显促进吲哚美辛的经皮渗透(P〈0.05);当选用三元促透剂时促透效果更好,单位面积累积透过量最高可达234.4μg·cm^-2,24h内药物累积透过百分率明显高于市售贴剂。结论:氮酮、油酸、丙二醇三者联合应用可作为吲哚关辛贴剂的理想促透剂。吲哚关辛水凝胶贴剂是具有应用价值的新型经皮控释制剂。  相似文献   

16.
The purpose of this study was to prepare and characterize coated pellets for controlled drug delivery. The influence of chitosan (CS) in pellets was evaluated by swelling, in vitro drug release and intestinal permeation assays. Pellets were coated with an enteric polymer, Kollicoat® MAE 30 DP, in a fluidized-bed apparatus and the coating formulations were based on a factorial design. Metronidazole (MT) released from coated and uncoated pellets were assessed by dissolution method using Apparatus I. Intestinal permeation was evaluated by everted intestinal sac model in rats, used to study the absorption of MT from coated pellets containing CS or not through the intestinal tissue. Although the film coating avoided drug dissolution in gastric medium, the overall drug release and intestinal permeation were dependent on the presence of CS. Thus, pellets containing CS show potential as a system for controlled drug delivery.  相似文献   

17.
The aim of the present investigation is to encapsulate rofecoxib in niosomes and incorporate the prepared niosomes into dermal gel base for sustained therapeutic action. Niosomes were prepared by lipid film hydration technique and were analyzed for size, entrapment efficiency and drug retention capacity. Niosomal vesicles were then incorporated into blank carbopol gel to form niosomal gel. The in vitro permeation study across pig skin was performed using Keshary-Chien glass diffusion cell. The size and entrapment efficiency of the niosomal vesicles increased with gradual increase in HLB value of nonionic surfactants used. Maximum drug entrapment was observed with Span 20 with HLB value of 8.6 and drug leakage from vesicles was less at refrigerated condition than at the room temperature. Higher proportion of cholesterol made the niosomal formulation more stable with high drug retention properties. The niosomal gel showed a prolong drug release behavior compared to plain drug gel. Differential scanning calorimetric study of drug loaded gel and pig skin after permeation study confirmed inertness of carbopol gel base toward rofecoxib and absence of drug metabolism in the skin during permeation study, respectively. The niosomal formulations were successfully prepared by lipid film hydration technique using cholesterol and Span as nonionic surfactant. Presence of cholesterol made niosomes more stable with high drug entrapment efficiency and retention properties. The lower flux value of niosomal gel as compared to plain drug gel across pig skin assured the prolong drug release behavior with sustained action.  相似文献   

18.
Sublingual route is one of the oldest alternative routes studied for the administration of drugs. However, the effect of physical-chemical properties on drug permeation via this route has not been systemically investigated. The objective of this study was to determine the effect of two key physicochemical properties, lipophilicity and ionization, on the transport of drugs across porcine sublingual mucosa. A series of β-blockers were used to study the effect of lipophilicity on drug permeation across the sublingual mucosa, while nimesulide (pKa 6.5) was used as a model drug to study the effect of degree of ionization on sublingual mucosa permeation of ionized and unionized species. Permeation of β-blockers increased linearly with an increase in the lipophilicity for the range of compounds studied. The permeability of nimesulide across sublingual mucosa decreased with an increase of pH. The flux of ionized and unionized forms of nimesulide was determined to delineate the contribution of ionized and unionized species to the total flux. At low pH, the apparent flux was primarily contributed by unionized species; however, when the pH is increased beyond its pKa, the primary contributor to the apparent flux, nimesulide, is ionized species. The contribution of each species to the apparent flux was shown to be determined by the thermodynamic activity of ionized or unionized species. This study identified the roles of lipophilicity and thermodynamic activity in drug permeation across the sublingual mucosa. The findings can help guide the design of sublingual drug delivery systems with optimal pH and solubility.  相似文献   

19.
Preparation of an intelligent drug delivery system which releases the drug in response to the environmental stimuli in a controlled manner is one of the interesting subjects and it is the purpose of this study. Films composed of Eudragit RS and different percentages of plasticizers (0%, 5%, 10%, or 20% w/w based on polymer weight), poly ethylene glycol 400 or triethyl citrate (TEC), were prepared by solvent casting method. Glass transition temperatures of the films were determined by differential scanning colorimetery. Water uptake and drug permeation through membranes with the glass transition temperature (Tg) close to the body temperature were investigated. Propranolol hydrochloride and acetaminophen were used as model drugs in permeation studies. The results showed that Eudragit RS films with 20% of either plasticizer showed thermo-responsivity around body temperature. The water uptake of the films and the permeation rates of both drugs increased at temperatures above the Tg of the films. The films containing TEC was found to be more appropriate thermo-responsive membrane due to a higher sensitivity to temperature and more ability to control drug release.  相似文献   

20.
The purpose of this study was to prepare sublingual tablets, containing the antiasthmatic drug ketotifen fumarate which suffers an extensive first-pass effect, using the fast-melt granulation technique. The powder mixtures containing the drug were agglomerated using a blend of polyethylene glycol 400 and 6000 as meltable hydrophilic binders. Granular mannitol or granular mannitol/sucrose mixture were used as fillers. A mechanical mixer was used to prepare the granules at 40°C. The method involved no water or organic solvents, which are used in conventional granulation, and hence no drying step was included, which saved time. Twelve formulations were prepared and characterized using official and non official tests. Three formulations showed the best results and were subjected to an ex vivo permeation study using excised chicken cheek pouches. The formulation F4I possessed the highest permeation coefficient due to the presence of the permeation enhancer (polyethylene glycol) in an amount which allowed maximum drug permeation, and was subjected to a pharmacokinetic study using rabbits as an animal model. The bioavailability of F4I was significantly higher than that of a commercially available dosage form (Zaditen® solution-Novartis Pharma-Egypt) (p > 0.05). Thus, fast-melt granulation allowed for rapid tablet disintegration and an enhanced permeation of the drug through the sublingual mucosa, resulting in increased bioavailabililty.Key words: chicken pouches, fast-melt granulation, ketotifen fumarate, permeation, sublingual tablet, Zaditen®  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号