首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The distribution of dividing cells is described for embryos and larvae of amphioxus (Branchiostoma floridae) pulse labeled with bromodeoxyuridine. Because cell division is assessed for all of the developing tissues, this is the first comprehensive study of developmental cell proliferation for an animal lacking a stereotyped cell lineage. In amphioxus, cell divisions are virtually synchronous during cleavage, but become asynchronous at the blastula stage. Starting at the neurula stage, after the origin of the mesoderm, the proportion of dividing cells progressively declines in the somitic mesoderm and notochord. Other tissues, however, deviate from this pattern. For example, in the mid-neurula, there is a brief, intense burst of mitosis at the anterior end of the neural plate. Also, from the neurula through the early larval stage, all of the ectoderm cells cease dividing and develop cilia that propel the animal through the water; subsequently, in the epidermis of later larvae, mitosis resumes and the proportion of ciliated cells declines as muscular undulation gradually replaces ciliation for swimming. Finally, in the early larvae, there is a terminal arrest of cell division in three cell types that differentiate early to participate in feeding as soon as the mouth opens-namely the ciliated pharyngeal cells that produce the feeding current and the secretory cells of the club-shaped gland and endostyle that export food-trapping mucus into the pharynx. In sum, these stage- and tissue-specific changes in cell proliferation intensity illustrate how the requirements of embryonic and larval natural history can shape developmental programs.  相似文献   

3.
Serial sections were used to map the ventrally positioned neurons of the anterior nerve cord of a 12.5-day amphioxus larva from the infundibular region to the end of somite 2. Synaptic patterns reveal five categories of descending pathways, four of which are associated with the ventral compartment (VC) motoneurons responsible for escape swimming. 1) Pre-, para-, and postinfundibular (tegmental) neurons with large varicosities and mixed vesicle populations provide both synaptic and paracrine input to various components of the tegmental neuropile and primary motor center. Four categories of these neurons are distinguished on the basis of their vesicles. 2) Multiple anterior sensory pathways converge on the large paired neurons (LPNs) located near the junction of somites 1 and 2. LPN synaptic output is almost exclusively contralateral. This, together with the evidence for cross-innervation between the third pair of LPNs, is consistent with the latter acting as locomotory pacemakers. 3) Axons from several classes of tegmental neurons converge in the paraxial region on each side of the cord where they form distinct tracts, the upper paraxial bundles. The right bundle is larger than the left, which suggests a role during early development when myotome contractions are biased to one side. 4) Fibers in the ventral tracts from ipsilateral projection neurons, sensory neurons, and additional ascending fibers synapse repeatedly with VC motoneurons. This may be how the overall level of excitation of the latter is controlled so as to modulate their response to pacemaker input. The fifth pathway consists of fibers involved in controlling the dorsal compartment (DC) motoneurons responsible for slow swimming, which are largely isolated from inputs to the VC locomotory system. The ventral neurons of the primary motor center form a more or less continuous file on either side of the floor plate, with certain cell types showing a tendency to cluster. There are, however, few obvious patterns of the kind expected if development were controlled by a rigid, lineage-based mechanism. The evolutionary implications of the involvement of a midbrain-level pacemaker in controlling larval swimming in amphioxus is discussed.  相似文献   

4.
王慧  李光  王义权 《遗传》2015,37(10):1036-1043
文昌鱼隶属脊索动物门头索动物亚门,是无脊椎动物到脊椎动物的过渡类群,其躯体结构简单,是研究胚胎发育的理想材料。本文以文昌鱼为实验对象,利用TALEN敲除技术对Hedgehog(Hh)基因在胚胎发育中的功能进行了研究。在文昌鱼Hh基因翻译起始位点下游附近选取TALEN目标位点,根据此序列组装相应TALEN重组质粒,体外合成mRNA,向未受精卵注射mRNA后,经体外受精获得F0代胚胎。效率分析显示,靶向该基因的TALEN mRNA可导致F0代胚胎在相应基因组区域发生突变的比例为34%。对部分F0个体所产配子筛查发现,TALEN引起的突变可进入配子,将其中1尾突变类型为8 bp缺失的雄性个体与野生型雌性配对获得F1群体,对F1群体逐尾筛查,从中获得多尾携带8 bp缺失的杂合子;这些杂合子相互配对所产的F2代胚胎,其中约有1/4个体在幼体早期出现躯体前端和尾向下弯曲、脊索前端腹侧的中胚层组织发育不全,不能开口等;随着幼体生长发育,躯体前端和尾部进一步卷曲,口部仍未形成,左右各形成一个口前窝,内柱和鳃裂位于躯体腹侧,最终因无口摄食而死亡。基因型分析发现,上述畸形胚胎均为Hh纯合突变体,其与杂合子及野生型比例分布符合孟德尔遗传定律,表明这些发育畸型的特征与Hh基因功能缺失有关。  相似文献   

5.
Serial electron microscope reconstructions were used to examine the organization and cell types of the nerve plexus that surrounds the mouth in amphioxus larvae. The plexus is involved in a rejection response that occurs during feeding: a number of oral spines project across the mouth, and debris impinging on them triggers a contraction of the gill slit and pharyngeal musculature that forces water through the mouth, dislodging the debris. The oral spine cells are secondary sense cells that synapse with neurites belonging to a class of peripheral interneurons intrinsic to the oral nerve plexus. These in turn synapse with a second class of peripheral neurons with large axons that we interpret as sensory cells and which probably transmit signals to the nerve cord. The intrinsic cells also appear to synapse with each other, implying that local integrative activities of some complexity occur in the oral plexus. In comparative terms, the intrinsic neurons most closely resemble the Merkel-like accessory cells of vertebrate taste buds, and we postulate a homology between oral spine cells and taste buds, despite differences in function. There are also similarities between the amphioxus oral plexus and adoral nerves and ganglia of echinoderm larvae, suggesting homology of both the oral nerve plexus and the mouth itself between lower deuterostome phyla and chordates.  相似文献   

6.
Members of the netrin gene family have been identified in vertebrates, Drosophila and Caenorhabditis elegans and found to encode secreted molecules involved in axon guidance. Here I use the conserved function of netrins in triploblasts, coupled with the phylogenetic position of amphioxus (the closest living relative of the vertebrates), to investigate the evolution of an axon guidance cue in chordates. A single amphioxus netrin gene was isolated by PCR and cDNA library screening and named AmphiNetrin. The predicted AmphiNetrin protein showed high identity to other netrin family members but differed in that the third of three EGF repeats found in other netrins was absent. Molecular phylogene-tic analysis showed that despite the absent EGF repeat AmphiNetrin is most closely related to the vertebrate netrins. AmphiNetrin expression was identified in embryonic notochord and floor plate, a pattern similar to that of vertebrate netrin-1 expression. AmphiNetrin expression was also identified more widely in the posterior larval brain, and in the anterior extension of the notochord that underlies the anterior of the amphioxus brain. All of these areas of expression are correlated with developing axon trajectories: The floor plate with ventrally projecting somatic motor neurons and Rohde cell projections, the posterior brain with the ventral commissure and primary motor centre and the anterior extension of the notochord with ventrally projecting neurons associated with the median eye. Amphioxus is naturally cyclopaedic and also lacks the ventral brain cells that the induction of which results in the splitting of the vertebrate eye field and, when missing, result in cyclopaedia. These cells normally express netrins required for developing axon tracts in the brain, and the expression of AmphiNetrin in the anterior extension of the notochord underlying the brain may explain how amphioxus is able to maintain ventral guidance cues while lacking these cells. Received: 15 November 1999 / Accepted: 27 January 2000  相似文献   

7.
I used histological sections and 3D reconstructions to document development through metamorphosis of the foregut and proboscis in the conoidean neogastropod Conus lividus. A goal was to determine how highly derived features of the post-metamorphic feeding system of this gastropod predator develop without interfering with larval structures for microherbivory. A second goal was to compare foregut development in this conoidean with previous observations on foregut development in the buccinoidean neogastropod Nassarius mendicus. These two neogastropods both have a feeding larval stage, but they show major differences in post-metamorphic foregut morphology. Basic events in development of the proboscis and proboscis sheath in C. lividus and N. mendicus were similar. However, the elongate buccal tube of C. lividus forms during metamorphosis as a composite of apical epidermal tissue that grows inward and ventral foregut tissue that extends outward. The larval mouth is not carried through metamorphosis. Comparative observations on foregut development in caenogastropods, which now include data on C. lividus, suggest that the foregut incorporates dorsal and ventral modules having different ontogenetic and functional fates. This developmental modularity may have facilitated evolutionary diversification of the post-metamorphic foregut. Foregut diversification in predatory gastropods may have been further fast-tracked by developmental uncoupling of larval and post-metamorphic mouths.  相似文献   

8.
We isolated a full-length cDNA clone of amphioxus AmphiNk2-tin, an NK2 gene similar in sequence to vertebrate NK2 cardiac genes, suggesting a potentially similar function to Drosophila tinman and to vertebrate NK2 cardiac genes during heart development. During the neurula stage of amphioxus, AmphiNk2-tin is expressed first within the foregut endoderm, then transiently in muscle precursor cells in the somites, and finally in some mesoderm cells of the visceral peritoneum arranged in an approximately midventral row running beneath the midgut and hindgut. The peritoneal cells that express AmphiNk2-tin are evidently precursors of the myocardium of the heart, which subsequently becomes morphologically detectable ventral to the gut. The amphioxus heart is a rostrocaudally extended tube consisting entirely of myocardial cells (at both the larval and adult stages); there are no chambers, valves, endocardium, epicardium, or other differentiated features of vertebrate hearts. Phylogenetic analysis of the AmphiNk2-tin sequence documents its close relationship to vertebrate NK2 class cardiac genes, and ancillary evidence suggests a relationship with the Drosophila NK2 gene tinman. Apparently, an amphioxus-like heart, and the developmental program directing its development, was the foundation upon which the vertebrate heart evolved by progressive modular innovations at the genetic and morphological levels of organization.  相似文献   

9.
Serial transmission electron microscopy and 3D reconstruction were used to document cell morphology and position of the motoneurones innervating somites 1 and 2 of a 12.5-day amphioxus larva, of Branchiostoma floridae , and also those innervating the dorsal compartment of somites 3 through 6 of an 8-day larva. Motoneurones supplying the ventral and dorsal compartments can be distinguished from one another on a number of morphological criteria. The ventral compartment motoneurones are neither symmetrical nor particularly ordered in arrangement. Their cilia are short and point forward or obliquely across the central canal; their axons run along the basal lamina adjacent to processes from muscle fibres, with which they make extended linear series of synapses containing 45–60 nm synaptic vesicles. The dorsal compartment motoneurones are paired and tend to be positioned at or near the junctions between somites. Their cilia are longer and project caudally; their axons are large, filled with mitochondria and 30–45 nm synaptic vesicles, and make synapses only at specific, segmentally repeated sites.
  An unusual feature of both cell types is that synaptic input occurs all along the axon, either by direct axo-axonal synapses or via slender dendritic processes. This allows for redundancy and multiple inputs, and is possible only because amphioxus somatic motor axons lie entirely within the nerve cord, which is itself an unusual feature among chordates. The possible significance of dual somatic innervation is discussed in relation to the dual innervation of the head in vertebrates, which has separate sets of somatic and visceral/branchiomotor nerves.  相似文献   

10.
Florida lancelets were raised in laboratory cultures from the egg to the juvenile stage. At frequent intervals during development, elongation of the embryonic and larval body was measured at room temperature (22.5°C) and at the approximate temperature of the natural environment (30°C). Development was slower at the lower temperature, with metamorphosis commencing during the fifth week as compared to the third week at the higher temperature. Scanning electron microscopy (SEM) was used to describe a frequently sampled series of hatched embryos, pre-metamorphic larvae, metamorphic larvae, and juveniles. The advent (and sometimes subsequent disappearance) of the following structures was determined from the SEM data: general epidermal ciliation, peroral pit, mouth, primary gill slits, ciliary tuft, external opening of the club-shaped gland, sense cells, anus, metapleural folds, and preoral cirri. Our SEM did not substantiate the claims of van Wijhe for a transitory larval mouth near the anteriovental end of the larvae. The general epidermal cilation, which is uniformly distributed in the embryos, becomes somewhat reduced in the pre-metamorphic larvae and then disappears almost entirely during metamorphosis. The epidermis includes two distinct sense cell types (I and II) and possibly a third type (the ventral pit cells, to which an adhesive role has alternatively been attributed). The anus first opens on the right-hand side and only later migrates across the mid-ventral line to assume a position on the left-hand side of the larva; this is contrary to the established view that the anus of the larval lancelets opens on the left-hand side and remains there.  相似文献   

11.
The chordates include vertebrates plus two groups of invertebrates(the cephalochordates and tunicates). Previous embryonic fatemaps of the cephalochordate amphioxus (Branchiostoma) were influencedby preconceptions that early development in amphioxus and ascidiantunicates should be fundamentally the same and that the earlyamphioxus embryo, like that of amphibians, should have ventralmesoderm. Although detailed cell lineage tracing in amphioxushas not been done because of limited availability of the embryosand because cleavage is radial and holoblastic with the blastomeresnearly equal in size and not tightly adherent until the mid-blastulastage, a compilation of data from gene expression and function,blastomere isolation and dye labeling allows a more realisticfate map to be drawn. The revised fate map is substantiallydifferent from that of ascidians. It shows (1) that the anteriorpole of the amphioxus embryo is offset dorsally from the animalpole only by about 20°, (2) that the ectoderm/mesendodermboundary (the future rim of the blastopore) is at the equatorof the blastula, which approximately coincides with the 3rdcleavage plane, and (3) that there is no ventral mesoderm duringthe gastrula stage. Involution or ingression of cells over theblastopore lip is negligible, and the blastopore, which is posterior,closes centripetally as if by a purse string. During the gastrulastage, the animal pole shifts ventrally, coming to lie about20° ventral to the anterior tip of the late gastrula/earlyneurula. Comparisons of the embryos of amphioxus and vertebratesindicate that in spite of large differences in the mechanicsof cleavage and gastrulation, anterior/posterior and dorsal/ventralpatterning occur by homologous genetic mechanisms. Therefore,the small, nonyolky embryo of amphioxus is probably a reasonableapproximation of the basal chordate embryo before the evolutionof determinate cleavage in the tunicates and the evolution largeamounts of yolk in basal vertebrates.  相似文献   

12.
It was previously discovered that tail fin rays of larval amphioxus are long ciliary rootlets in posterior epidermal cells. This work describes the heretofore unknown origin and fate of these organelles in the Florida amphioxus (Branchiostoma floridae). In late embryos, epidermal cells at the posterior end of the body increase in height, thus producing a tail fin. One ciliary rootlet in each cell elongates and also rotates through about 90°, soon becoming oriented parallel to the long axis of the cell and running continuously from the apical to the basal plasma membrane. During the subsequent growth of the larval tail, the rootlets and epidermal cells housing them reach lengths up to 120 μm. At metamorphosis, the rootlets become vacuolated and rapidly decrease in length along with the height of the tail epidermis. Contemporaneously, abundant extracellular dermal matrix accumulates in the sagittal plane of the body to produce a predominantly dermal tail fin. Throughout postmetamorphic life, the posterior epidermal cells, now without ciliary rootlets, thinly cover a largely dermal tail flange. Thus, the specialized morphology of the amphioxus tail fin is generated by two different cellular mechanisms, involving different cell populations (ectodermal and mesodermal), at different life‐history stages.  相似文献   

13.
The vitamin A derived morphogen retinoic acid (RA) is known to function in the regulation of tissue proliferation and differentiation. Here, we show that exogenous RA applied to late larvae of the invertebrate chordate amphioxus can reverse some differentiated states. Although treatment with the RA antagonist BMS009 has no obvious effect on late larvae of amphioxus, administration of excess RA alters the morphology of the posterior end of the body. The anus closes over, and gut contents accumulate in the hindgut. In addition, the larval tail fin regresses, although little apoptosis takes place. This fin normally consists of columnar epidermal cells, each characterized by a ciliary rootlet running all the way from an apical centriole to the base of the cell and likely contributing substantial cytoskeletal support. After a few days of RA treatment, the rootlet becomes disrupted, and the cell shape changes from columnar to cuboidal. Transmission electron microscopy (TEM) shows fragments of the rootlet in the basal cytoplasm of the cuboidal cell. A major component of the ciliary rootlet in amphioxus is the protein Rootletin, which is encoded by a single AmphiRootletin gene. This gene is highly expressed in the tail epithelial cells of control larvae, but becomes downregulated after about a day of RA treatment, and the breakup of the ciliary rootlet soon follows. The effect of excess RA on these epidermal cells of the larval tail in amphioxus is unlike posterior regression in developing zebrafish, where elevated RA signaling alters connective tissues of mesodermal origin. In contrast, however, the RA‐induced closure of the amphioxus anus has parallels in the RA‐induced caudal regression syndrome of mammals.  相似文献   

14.
Structure and developmental expression are described for amphioxus AmphiVent, a homolog of vertebrate Vent genes. In amphioxus, AmphiVent-expressing ventral mesoderm arises at midneurula by outgrowth from the paraxial mesoderm, but in vertebrates, Vent-expressing ventral mesoderm originates earlier, at the gastrula stage. In other embryonic tissues (nascent paraxial mesoderm, neural plate, endoderm, and tailbud), AmphiVent and its vertebrate homologs are expressed in similar spatiotemporal domains, indicating conservation of many Vent gene functions during chordate evolution. The ventral mesoderm evidently develops precociously in vertebrates because their relatively large embryos probably require an early and extensive deployment of the mesoderm-derived circulatory system. The vertebrate ventral mesoderm, in spite of its strikingly early advent, still resembles the nascent ventral mesoderm of amphioxus in expressing Vent homologs. This coincidence may indicate that Vent homologs in vertebrates and amphioxus play comparable roles in ventral mesoderm specification.  相似文献   

15.
16.
17.
In chordates, early separation of cell fate domains occurs prior to the final specification of ectoderm to neural and non-neural as well as mesoderm to dorsal and ventral during development. Maintaining such division with the establishment of an exact border between the domains is required for the formation of highly differentiated structures such as neural tube and notochord. We hypothesized that the key condition for efficient cell fate separation in a chordate embryo is the presence of a positive feedback loop for Bmp signaling within the gene regulatory network (GRN), underlying early axial patterning. Here, we therefore investigated the role of Bmp signaling in axial cell fate determination in amphioxus, the basal chordate possessing a centralized nervous system. Pharmacological inhibition of Bmp signaling induces dorsalization of amphioxus embryos and expansion of neural plate markers, which is consistent with an ancestral role of Bmp signaling in chordate axial patterning and neural plate formation. Furthermore, we provided evidence for the presence of the positive feedback loop within the Bmp signaling network of amphioxus. Using mRNA microinjections we found that, in contrast to vertebrate Vent genes, which promote the expression of Bmp4, amphioxus Vent1 is likely not responsible for activation of cephalochordate ortholog Bmp2/4. Cis-regulatory analysis of amphioxus Bmp2/4, Admp and Chordin promoters in medaka embryos revealed remarkable conservation of the gene regulatory information between vertebrates and basal chordates. Our data suggest that emergence of a positive feedback loop within the Bmp signaling network may represent a key molecular event in the evolutionary history of the chordate cell fate determination.  相似文献   

18.
19.
The basal chordate amphioxus resembles vertebrates in having a dorsal, hollow nerve cord, a notochord and somites. However, it lacks extensive gene duplications, and its embryos are small and gastrulate by simple invagination. Here we demonstrate that Nodal/Vg1 signaling acts from early cleavage through the gastrula stage to specify and maintain dorsal/anterior development while, starting at the early gastrula stage, BMP signaling promotes ventral/posterior identity. Knockdown and gain-of-function experiments show that these pathways act in opposition to one another. Signaling by these pathways is modulated by dorsally and/or anteriorly expressed genes including Chordin, Cerberus, and Blimp1. Overexpression and/or reporter assays in Xenopus demonstrate that the functions of these proteins are conserved between amphioxus and vertebrates. Thus, a fundamental genetic mechanism for axial patterning involving opposing Nodal and BMP signaling is present in amphioxus and probably also in the common ancestor of amphioxus and vertebrates or even earlier in deuterostome evolution.  相似文献   

20.
Serial and interval electron micrograph series were used to examine the rostral and anterodorsal nerves of 12.5‐day‐old amphioxus larvae and trace selected fibres to their targets in the nerve cord. The nerves contain a variety of fibre types, including axons from at least two types of epithelial sensory cells and neurites derived from dorsal (Retzius) bipolar cells located within the cord. The rostral epithelial cells form basal synapses with a population of peripheral neurites that probably derive from the dorsal bipolar cells, though other sources are possible. Varicosities containing dense‐core vesicles occur at the tip of the rostrum, indicating the presence of efferent innervation at this site. Within the cord, some peripherally derived rostral afferents terminate at the level of the anterior cerebral vesicle, others synapse directly with both motoneurones and the notochord, but those in the largest bundle target the dendrites of the large paired neurones (LPNs) located in the primary motor centre. LPN dendrites also receive synapses from sensory fibres arriving via the anterodorsal nerves, from the anterior‐most of the dorsal bipolar cells, referred to here as tectal cells, and from a single fibre derived from the frontal eye. This convergence of multiple inputs accords with other evidence that the LPNs are key intermediaries in the sensorimotor pathway that activates the larval escape response. The rostral nerves are much larger at metamorphosis, but the ventral tracts that derive from them are still comparatively small. This is because the majority of rostral fibres are diverted into a late‐developing dorsal tract that travels within the cord to the front end of the dorsolateral neuropile, where most of its fibres disperse and form synapses. The positioning of the dorsal and ventral tracts strongly suggests homology with vertebrate olfactory and terminal nerves, respectively. This, and the question of whether the amphioxus central nervous system has anything comparable to the olfactory bulb, a telencephalic structure, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号