首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational transition is fundamental to the mechanism of functional regulation in proteins, and serpins (serine protease inhibitors) can provide insight into this process. Serpins are metastable in their native forms, and they ordinarily undergo conformational transition to a stable state only when they form a tight complex with target proteases. The metastable native form is thus considered to be a kinetically trapped folding intermediate. We sought to understand the nature of the serpin kinetic trap as a step toward discovering how conformational transition is regulated. We found that mutations of the B/C beta-barrel of native alpha(1)-antitrypsin, a prototypical serpin, allowed conversion of the molecule into a more stable state. A 2.2 A resolution crystal structure of the stable form (PDB code, ) showed that the reactive site loop is inserted into an A beta-sheet, as in the latent plasminogen activator inhibitor-1. Mutational analyses suggest strongly that interactions not found in the final stable form cause the kinetic trap in serpin protein folding.  相似文献   

2.
β‐Lactams are the most commonly prescribed class of antibiotics and have had an enormous impact on human health. Thus, it is disquieting that an enzyme called New Delhi metallo‐β‐lactamase‐1 (NDM‐1) can confer Enterobacteriaceae with nearly complete resistance to all β‐lactam antibiotics including the carbapenams. We have determined the crystal structure of Klebsiella pneumoniae apo‐NDM‐1 to 2.1‐Å resolution. From the structure, we see that NDM‐1 has an expansive active site with a unique electrostatic profile, which we propose leads to a broader substrate specificity. In addition, NDM‐1 undergoes important conformational changes upon substrate binding. These changes have not been previously observed in metallo‐β‐lactamase enzymes and may have a direct influence on substrate recognition and catalysis.  相似文献   

3.
Blouse GE  Perron MJ  Thompson JH  Day DE  Link CA  Shore JD 《Biochemistry》2002,41(40):11997-12009
The inhibition mechanism of serpins requires a change in structure to entrap the target proteinase as a stable acyl-enzyme complex. Although it has generally been assumed that reactive center loop insertion and associated conformational change proceeds in a concerted manner, this has not been demonstrated directly. Through the substitution of tryptophan with 7-azatryptophan and an analysis of transient reaction kinetics, we have described the formation of an inhibited serpin-proteinase complex as a single concerted transition of the serpin structure. Replacement of the four tryptophans of plasminogen activator inhibitor type-1 (PAI-1) with the spectrally unique analogue 7-azatryptophan permitted observations of conformational changes in the serpin but not those of the proteinase. Formation of covalent acyl-enzyme complexes, but not noncovalent Michaelis complexes, with tissue-type plasminogen activator (t-PA) or urokinase (u-PA) resulted in rapid decreases of fluorescence coinciding with insertion of the reactive center loop and expansion of beta-sheet A. Insertion of an octapeptide consisting of the P14-P7 residues of the reactive center loop into beta-sheet A produced the same conformational change in serpin structure measured by 7-azatryptophan fluorescence, suggesting that introduction of the proximal loop residues induces the structural rearrangement of the serpin molecule. The atom specific modification of the tryptophan indole rings through analogue substitution produced a proteinase specific effect on function. The reduced inhibitory activity of PAI-1 against t-PA but not u-PA suggested that the mechanism of loop insertion is sensitive to the intramolecular interactions of one or more tryptophan residues.  相似文献   

4.
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) protein family, is unique among the serpins in its conformational lability. This lability allows spontaneous conversion of the active form to a more stable, latent conformation under physiological conditions. In other serpins, polymerization, rather than latency transition, is induced under pathological conditions or upon heat treatment. To identify specific factors promoting latency conversion in PAI-1, we mutated PAI-1 at various positions and compared the effects with those of equivalent mutations in alpha(1)-antitrypsin, the archetypal serpin. Mutations that improved interactions with the turn between helix F and the third strand of beta-sheet A (thFs3A) or the fifth strand of beta-sheet A (s5A), which are near the site of latency transition-associated insertion of the reactive center loop, retarded latency conversion but did not greatly increase structural stability. Mutations that decreased interactions with s2C facilitated conformational conversion, possibly by releasing the reactive center loop from beta-sheet C. Mutations of Thr93 that filled a hydrophobic surface pocket on s2A dramatically increased structural stability but had a negligible effect on the conformational transition. Our results suggest that the structural features controlling latency transition in PAI-1 are highly localized, whereas the conformational strain of the native forms of other inhibitory serpins is distributed throughout the molecule and induces polymerization.  相似文献   

5.
Sakaguchi K  Suzuki H  Ohfune Y 《Chirality》2001,13(7):357-365
A vinylsilane-containing alpha-amino acid and alpha,alpha-disubstituted alpha-amino acid 2 having two contiguous asymmetric carbon centers at their alpha and beta positions were synthesized in an optically active form by ester-enolate Claisen rearrangement of the alpha-acyloxysilane 1 as the key step, where the chirality of an alpha-acyloxy-TBDMS group was completely transferred to the rearranged product.  相似文献   

6.
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein family, which has a common tertiary structure consisting of three beta-sheets and several alpha-helices. Despite the similarity of its structure with those of other serpins, PAI-1 is unique in its conformational lability, which allows the conversion of the metastable active form to a more stable latent conformation under physiological conditions. For the conformational conversion to occur, the reactive center loop (RCL) of PAI-1 must be mobilized and inserted into the major beta-sheet, A sheet. In an effort to understand how the structural conversion is regulated in this conformationally labile serpin, we modulated the length of the RCL of PAI-1. We show that releasing the constraint on the RCL by extension of the loop facilitates a conformational transition of PAI-1 to a stable state. Biochemical data strongly suggest that the stabilization of the transformed conformation is owing to the insertion of the RCL into A beta-sheet, as in the known latent form. In contrast, reducing the loop length drastically retards the conformational change. The results clearly show that the constraint on the RCL is a factor that regulates the conformational transition of PAI-1.  相似文献   

7.
Secondary structure formation and stability are essential features in the knowledge of complex folding topology of biomolecules. To better understand the relationships between preferred conformations and functional properties of beta-homo-amino acids, the synthesis and conformational characterization by X-ray diffraction analysis of peptides containing conformationally constrained Calpha,alpha-dialkylated amino acid residues, such as alpha-aminoisobutyric acid or 1-aminocyclohexane-1-carboxylic acid and a single beta-homoamino acid, differently displaced along the peptide sequence have been carried out. The peptides investigated are: Boc-betaHLeu-(Ac6c)2-OMe, Boc-Ac6c-betaHLeu-(Ac6c)2-OMe and Boc-betaHVal-(Aib)5-OtBu, together with the C-protected beta-homo-residue HCl.H-betaHVal-OMe. The results indicate that the insertion of a betaH-residue at position 1 or 2 of peptides containing strong helix-inducing, bulky Calpha,alpha-disubstituted amino acid residues does not induce any specific conformational preferences. In the crystal state, most of the NH groups of beta-homo residues of tri- and tetrapeptides are not involved in intramolecular hydrogen bonds, thus failing to achieve helical structures similar to those of peptides exclusively constituted of Calpha,alpha-disubstituted amino acid residues. However, by repeating the structural motifs observed in the molecules investigated, a beta-pleated sheet secondary structure, and a new helical structure, named (14/15)-helix, were generated, corresponding to calculated minimum-energy conformations. Our findings, as well as literature data, strongly indicate that conformations of betaH-residues, with the micro torsion angle equal to -60 degrees, are very unlikely.  相似文献   

8.
BACKGROUND: Plasminogen activator inhibitor 2 (PAI-2) is a member of the serpin family of protease inhibitors that function via a dramatic structural change from a native, stressed state to a relaxed form. This transition is mediated by a segment of the serpin termed the reactive centre loop (RCL); the RCL is cleaved on interaction with the protease and becomes inserted into betasheet A of the serpin. Major questions remain as to what factors facilitate this transition and how they relate to protease inhibition. RESULTS: The crystal structure of a mutant form of human PAI-2 in the stressed state has been determined at 2.0 A resolution. The RCL is completely disordered in the structure. An examination of polar residues that are highly conserved across all serpins identifies functionally important regions. A buried polar cluster beneath betasheet A (the so-called 'shutter' region) is found to stabilise both the stressed and relaxed forms via a rearrangement of hydrogen bonds. CONCLUSIONS: A statistical analysis of interstrand interactions indicated that the shutter region can be used to discriminate between inhibitory and non-inhibitory serpins. This analysis implied that insertion of the RCL into betasheet A up to residue P8 is important for protease inhibition and hence the structure of the complex formed between the serpin and the target protease.  相似文献   

9.
A sequence in yeast MATalpha2/MCM1/DNA complex that folds into alpha-helix or beta-hairpin depending on the surroundings has been known as "chameleon" sequence. We obtained the free-energy landscape of this sequence by using a generalized-ensemble method, multicanonical molecular dynamics simulation, to sample the conformational space. The system was expressed with an all-atom model in explicit water, and the initial conformation for the simulation was a random one. The free-energy landscape demonstrated that this sequence inherently has an ability to form either alpha or beta structure: The conformational distribution in the landscape consisted of two alpha-helical clusters with different packing patterns of hydrophobic residues, and four beta-hairpin clusters with different strand-strand interaction patterns. Narrow pathways connecting the clusters were found, and analysis on the pathways showed that a compact structure formed at the N-terminal root of the chameleon sequence controls the cluster-cluster transitions. The free-energy landscape indicates that a small conditional change induces alpha-beta transitions. Additional unfolding simulations done with replacing amino acids showed that the chameleon sequence has an advantage to form an alpha-helix. Current study may be useful to understand the mechanism of diseases resulting from abnormal chain folding, such as amyloid disease.  相似文献   

10.
Dihedral probability grid Monte Carlo (DPG-MC) is a general-purpose method of conformational sampling that can be applied to many problems in peptide and protein modeling. Here we present the DPG-MC method and apply it to predicting complete protein structures from C alpha coordinates. This is useful in such endeavors as homology modeling, protein structure prediction from lattice simulations, or fitting protein structures to X-ray crystallographic data. It also serves as an example of how DPG-MC can be applied to systems with geometric constraints. The conformational propensities for individual residues are used to guide conformational searches as the protein is built from the amino-terminus to the carboxyl-terminus. Results for a number of proteins show that both the backbone and side chain can be accurately modeled using DPG-MC. Backbone atoms are generally predicted with RMS errors of about 0.5 A (compared to X-ray crystal structure coordinates) and all atoms are predicted to an RMS error of 1.7 A or better.  相似文献   

11.
The molecular motor, myosin, undergoes conformational changes in order to convert chemical energy into force production. Based on kinetic and structural considerations, we assert that three crystal forms of the myosin V motor delineate the conformational changes that myosin motors undergo upon detachment from actin. First, a motor domain structure demonstrates that nucleotide-free myosin V adopts a specific state (rigor-like) that is not influenced by crystal packing. A second structure reveals an actomyosin state that favors rapid release of ADP, and differs from the rigor-like state by a P-loop rearrangement. Comparison of these structures with a third structure, a 2.0 angstroms resolution structure of the motor bound to an ATP analog, illuminates the structural features that provide communication between the actin interface and nucleotide-binding site. Paramount among these is a region we name the transducer, which is composed of the seven-stranded beta-sheet and associated loops and linkers. Reminiscent of the beta-sheet distortion of the F1-ATPase, sequential distortion of this transducer region likely controls sequential release of products from the nucleotide pocket during force generation.  相似文献   

12.
The structure of the trigonal crystal form of bovine beta-lactoglobulin variant B at pH 7.1 has been determined by X-ray diffraction methods at a resolution of 2.22 A and refined to values for R and Rfree of 0.239 and 0.286, respectively. By comparison with the structure of the trigonal crystal form of bovine beta-lactoglobulin variant A at pH 7.1, which was determined previously [Qin BY et al., 1998, Biochemistry 37:14014-14023], the structural consequences of the sequence differences D64G and V118A of variants A and B, respectively, have been investigated. Only minor differences in the core calyx structure occur. In the vicinity of the mutation site D64G on loop CD (residues 61-67), there are small changes in main-chain conformation, whereas the substitution V118A on beta-strand H is unaccompanied by changes in the surrounding structure, thereby creating a void volume and weakened hydrophobic interactions with a consequent loss of thermal stability relative to variant A. A conformational difference is found for the loop EF, implicated in the pH-dependent conformational change known as the Tanford transition, but it is not clear whether this reflects differences intrinsic to the variants in solution or differences in crystallization.  相似文献   

13.
Wang M  Shan L  Wang J 《Biopolymers》2006,83(3):268-279
Two synthetic peptides, SNasealpha1 and SNasealpha2, corresponding to residues G55-I72 and K97-A109, respectively, of staphylococcal nuclease (SNase), are adopted for detecting the role of helix alpha1 (E57-A69) and helix alpha2 (M98-Q106) in the initiation of folding of SNase. The helix-forming tendencies of the two SNase peptide fragments are investigated using circular dichroism (CD) and two-dimensional (2D) nuclear magnetic resonance (NMR) methods in water and 40% trifluoroethanol (TFE) solutions. The coil-helix conformational transitions of the two peptides in the TFE-H2O mixture are different from each other. SNasealpha1 adopts a low population of localized helical conformation in water, and shows a gradual transition to helical conformation with increasing concentrations of TFE. SNasealpha2 is essentially unstructured in water, but undergoes a cooperative transition to a predominantly helical conformation at high TFE concentrations. Using the NMR data obtained in the presence of 40% TFE, an ensemble of alpha-helical structures has been calculated for both peptides in the absence of tertiary interactions. Analysis of all the experimental data available indicates that formation of ordered alpha-helical structures in the segments E57-A69 and M98-Q106 of SNase may require nonlocal interactions through transient contact with hydrophobic residues in other parts of the protein to stabilize the helical conformations in the folding. The folding of helix alpha1 is supposed to be effective in initiating protein folding. The formation of helix alpha2 depends strongly on the hydrophobic environment created in the protein folding, and is more important in the stabilization of the tertiary conformation of SNase.  相似文献   

14.
Lin XJ  Zhang F  Xie YY  Bao WJ  He JH  Hu HY 《Biopolymers》2006,83(3):226-232
Alpha-synuclein (alpha-Syn) has been identified as a component of intracellular fibrillar deposits in Parkinson's disease. Though the real pathogenesis is still unknown, many investigations have revealed that conformational alteration and fibril formation of alpha-Syn protein have an important role in causing the disease. In this work, we introduced the g-factor spectra of solid-state circular dichroism to estimate the secondary structure contents of alpha-Syn fragments in amyloids. Fourier-transform infrared (FTIR) was also applied to confirm the structural formation. The results suggest that the central hydrophobic region is critical for beta-sheet formation and the conformational alteration is the foundation of protein abnormal aggregation. The research provides a practical approach to estimate the secondary structure contents of protein amyloids and further insight into the relevance of structural transformation and amyloidogenesis.  相似文献   

15.
To gain insight into the molecular details and hydration of amylopectin, the five constituting trisaccharides have been chemically synthesized as their methyl alpha-glycosides. All five trisaccharides were subjected to 950 MHz NMR spectroscopy for complete assignment and nanosecond molecular dynamics trajectories were calculated to study the structure and dynamics of the trisaccharides in aqueous solution. Systematic analysis of the simulation data revealed several examples of bridging water molecules playing an important role in the stabilization of specific amylopectin conformations, which was also supported by the experimental NMR data such as interresidue NOE's and heteronuclear scalar couplings between nuclei from neighboring residues. Although alpha-maltotriose, alpha-iso-maltotriose, alpha-panose and alpha-isopanose are relatively well characterized structures, the study also includes one less characterized trisaccharide with the structure alphaGlcp(1-->4)alphaGlcp(1-->6)alphaGlcp. This trisaccharide, tentatively labelled alpha-forkose, is located at the branch point of amylopectin, forking the amylopectin into two strands that align into double-helical segments. The results show that the conformation of alpha-forkose takes a natural bend form which fits well into the structure of the double-helical segment of amylopectin. As the only trisaccharide in this study the structure of alpha-forkose is not significantly influenced by the hydration. In contrast, alpha-isopanose takes a restricted, but rather extended form due to an exceptionally strong localized water density. The two homo-linkage oligomers, alpha-maltotriose and alpha-iso-maltotriose, showed to be the most extended and the most flexible trimers, respectively, providing regular structure for crystalline domains and maximum linker flexibility for amorphous domains.  相似文献   

16.
Chellgren BW  Creamer TP 《Proteins》2006,62(2):411-420
Loss of conformational entropy is one of the primary factors opposing protein folding. Both the backbone and side-chain of each residue in a protein will have their freedom of motion restricted in the final folded structure. The type of secondary structure of which a residue is part will have a significant impact on how much side-chain entropy is lost. Side-chain conformational entropies have previously been determined for folded proteins, simple models of unfolded proteins, alpha-helices, and a dipeptide model for beta-strands, but not for polyproline II (PII) helices. In this work, we present side-chain conformational estimates for the three regular secondary structure types: alpha-helices, beta-strands, and PII helices. Entropies are estimated from Monte Carlo computer simulations. Beta-strands are modeled as two structures, parallel and antiparallel beta-strands. Our data indicate that restraining a residue to the PII helix or antiparallel beta-strand conformations results in side-chain entropies equal to or higher than those obtained by restraining residues to the parallel beta-strand conformation. Side-chains in the alpha-helix conformation have the lowest side-chain entropies. The observation that extended structures retain the most side-chain entropy suggests that such structures would be entropically favored in unfolded proteins under folding conditions. Our data indicate that the PII helix conformation would be somewhat favored over beta-strand conformations, with antiparallel beta-strand favored over parallel. Notably, our data imply that, under some circumstances, residues may gain side-chain entropy upon folding. Implications of our findings for protein folding and unfolded states are discussed.  相似文献   

17.
Using a combined chemical/chiral chromatographic approach we synthesized an N-protected derivative of (R)-c(3)Val, a severely conformationally restricted C(alpha)-tetrasubstituted alpha-amino acid characterized by a C(beta,beta)-dimethylated cyclopropane system. A set of terminally protected derivatives and model peptides (to the heptamer level), containing one or two (R)-c(3)Val residues in combination with either Aib or Gly residues, was prepared by solution methods. A detailed solution and crystal-state conformational investigation, based on Fourier transform infrared (FTIR) absorption, (1)H-NMR, and x-ray diffraction techniques, performed in comparison with a similar study on related derivatives and peptides rich in (alphaMe)Val, the prototype of C(alpha)-tetrasubstituted alpha-amino acids of this subfamily, allowed us to conclude the following: (a) c(3)Val is a good beta-bend and helix former, although less efficient than (alphaMe)Val. (b) The relationship between alpha-carbon chirality and screw sense of the folded structure formed is the same as that of (alphaMe)Val, i.e., the (R)-enantiomer has a strong left-handed bias. (c) c(3)Val seems more prone than (alphaMe)Val to fold into a gamma-bend conformation. The conformational propensities of C(beta,beta)-disubstituted Ac(3)c residues are also discussed in comparison with those of the parent cyclopropane residue.  相似文献   

18.
The molecular interactions driving reactive center loop (RCL) insertion are of considerable interest in gaining a better understanding of the serpin inhibitory mechanism. Previous studies have suggested that interactions in the proximal hinge/breach region may be critical determinants of RCL insertion in serpins. In this study, conformational and functional changes in plasminogen activator inhibitor-2 (PAI-2) following incubation with a panel of synthetic RCL peptides indicated that the P14 residue is critical for RCL insertion, and hence inhibitory activity, in PAI-2. Only RCL peptides with a P14 threonine were able to induce the stressed to relaxed transition and abolish inhibitory activity in PAI-2, indicating that RCL insertion into beta-sheet A of PAI-2 is dependent upon this residue. The recently solved crystal structure of relaxed PAI-2 (PAI-2.RCL peptide complex) allowed detailed analysis of molecular interactions involving P14 related to RCL insertion. Of most interest is the rearrangement of hydrogen bonding around the breach region that accompanies the stressed to relaxed transition, in particular the formation of a side chain hydrogen bond between the threonine at P14 and an adjacent tyrosine on strand 2 of beta-sheet B in relaxed PAI-2. Structural alignment of known serpin sequences showed that this pairing (or the equivalent serine/threonine pairing) is highly conserved ( approximately 87%) in inhibitory serpins and may represent a general structural basis for serpin inhibitory activity.  相似文献   

19.
Amyloid fibril formation is widely believed to be a generic property of polypeptide chains. In the present study, alpha-chymotrypsin, a well-known serine protease has been driven toward these structures by the use of two different conditions involving (I) high temperature, pH 2.5, and (II) low concentration of trifluoroethanol (TFE), pH 2.5. A variety of experimental methods, including fluorescence emission, dynamic quenching, steady-state fluorescence anisotropy, far-UV circular dichroism, nuclear magnetic resonance spectroscopy, and dynamic light scattering were employed to characterize the conformational states of alpha-chymotrypsin that precede formation of amyloid fibrils. The structure formed under Condition I was an unfolded monomer, whereas an alpha-helical rich oligomer was induced in Condition II. Both the amyloid aggregation-prone species manifested a higher solvent exposure of hydrophobic and aromatic residues compared with the native state. Upon incubation of the protein in these conditions for 48 h, amyloid-like fibrils were formed with diameters of about 10-12 nm. In contrast, at neutral pH and low concentration of TFE, a significant degree of amorphous aggregation was observed, suggesting that charge neutralization of acidic residues in the amyloid core region has a positive influence on amyloid fibril formation. In summary, results presented in this communication suggest that amyloid fibrils of alpha-chymotrypsin may be obtained from a variety of structurally distinct conformational ensembles highlighting the critical importance of protein evolution mechanisms related to prevention of protein misfolding.  相似文献   

20.
The conformational properties of soluble α-synuclein, the primary protein found in patients with Parkinson's disease, are thought to play a key role in the structural transition to amyloid fibrils. In this work, we report that recombinant 100% N-terminal acetylated α-synuclein purified under mild physiological conditions presents as a primarily monomeric protein, and that the N-terminal acetyl group affects the transient secondary structure and fibril assembly rates of the protein. Residue-specific NMR chemical shift analysis indicates substantial increase in transient helical propensity in the first 9 N-terminal residues, as well as smaller long-range changes in residues 28-31, 43-46, and 50-66: regions in which the three familial mutations currently known to be causative of early onset disease are found. In addition, we show that the N-terminal acetylated protein forms fibrils that are morphologically similar to those formed from nonacetylated α-synuclein, but that their growth rates are slower. Our results highlight that N-terminal acetylation does not form significant numbers of dimers, tetramers, or higher molecular weight species, but does alter the conformational distributions of monomeric α-synuclein species in regions known to be important in metal binding, in association with membranes, and in regions known to affect fibril formation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号