首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome c oxidase (COX), the last enzyme of the respiratory chain of aerobic organisms, catalyzes the reduction of molecular oxygen to water. It is a redox-linked proton pump, whose mechanism of proton pumping has been controversially discussed, and the coupling of proton and electron transfer is still not understood. Here, we investigated the kinetics of proton transfer reactions following the injection of a single electron into the fully oxidized enzyme and its transfer to the hemes using time-resolved absorption spectroscopy and pH indicator dyes. By comparison of proton uptake and release kinetics observed for solubilized COX and COX-containing liposomes, we conclude that the 1-μs electron injection into Cu(A), close to the positive membrane side (P-side) of the enzyme, already results in proton uptake from both the P-side and the N (negative)-side (1.5 H(+)/COX and 1 H(+)/COX, respectively). The subsequent 10-μs transfer of the electron to heme a is accompanied by the release of 1 proton from the P-side to the aqueous bulk phase, leaving ~0.5 H(+)/COX at this side to electrostatically compensate the charge of the electron. With ~200 μs, all but 0.4 H(+) at the N-side are released to the bulk phase, and the remaining proton is transferred toward the hemes to a so-called "pump site." Thus, this proton may already be taken up by the enzyme as early as during the first electron transfer to Cu(A). These results support the idea of a proton-collecting antenna, switched on by electron injection.  相似文献   

2.
3.
The haem-copper oxidases comprise a large family of enzymes that is widespread among aerobic organisms. These remarkable membrane-bound proteins catalyse the respiratory reduction of dioxygen to water, and conserve free energy from this reaction by operating as proton pumps. The mechanism of redox-dependent proton translocation has been elusive despite the availability of high resolution crystal structures from several oxidases. Here, we discuss some recent as well as some older results that may shed light on this mechanism. We conclude that proton-pumping is initiated by vectorial proton transfer from a conserved glutamic acid (Glu242 in the bovine enzyme) to a proton acceptor above the haem groups, and that this primary event is mechanistically coupled to electron transfer from haem a to the binuclear haem a3/CuB centre. Subsequently, Glu242 is reprotonated from the negatively charged side of the membrane. Next this proton is transferred to the binuclear site to complete the chemistry, Glu242 is reprotonated once more, and the “prepumped” proton is ejected on the opposite side of the membrane. The different kinetics of electron-coupled proton transfer in different steps of the catalytic cycle may be related to differences in the driving force due to different Em values of the electron acceptor in the binuclear site.  相似文献   

4.
Prevention of cation permeation in wild-type aquaporin-1 (AQP1) is believed to be associated with the Asn-Pro-Ala (NPA) region and the aromatic/arginine selectivity filter (SF) domain. Previous work has suggested that the NPA region helps to impede proton permeation due to the protein backbone collective macrodipoles that create an environment favoring a directionally discontinuous channel hydrogen-bonded water chain and a large electrostatic barrier. The SF domain contributes to the proton permeation barrier by a spatial restriction mechanism and direct electrostatic interactions. To further explore these various effects, the free-energy barriers and the maximum cation conductance for the permeation of various cations through the AQP1-R195V and AQP1-R195S mutants are predicted computationally. The cations studied included the hydrated excess proton that utilizes the Grotthuss shuttling mechanism, a model “classical” charge localized hydronium cation that exhibits no Grotthuss shuttling, and a sodium cation. The hydrated excess proton was simulated using a specialized multi-state molecular dynamics method including a proper physical treatment of the proton shuttling and charge defect delocalization. Both AQP1 mutants exhibit a surprising cooperative effect leading to a reduction in the free-energy barrier for proton permeation around the NPA region due to altered water configurations in the SF region, with AQP1-R195S having a higher conductance than AQP1-R195V. The theoretical predictions are experimentally confirmed in wild-type AQP1 and the mutants expressed in Xenopus oocytes. The combined results suggest that the SF domain is a specialized structure that has evolved to impede proton permeation in aquaporins.  相似文献   

5.
In the light-driven bacteriorhodopsin proton pump, the first proton transfer step is from the retinal Schiff base to a nearby carboxylate group. The mechanism of this transfer step is highly controversial, in particular whether a direct proton jump is allowed. Here, we review the structural and energetic determinants of the direct proton transfer path computed by using a combined quantum mechanical/molecular mechanical approach. Both protein flexibility and electrostatic interactions play an important role in shaping the proton transfer energy profile. Detailed analysis of the energetics of putative transitions in the first half of the photocycle focuses on two elements that determine the likelihood that a given configuration of the active site is populated during the proton-pumping cycle. First, the rate-limiting barrier for proton transfer must be consistent with the kinetics of the photocycle. Second, the active-site configuration must be compatible with a productive overall pumping cycle.  相似文献   

6.
Gaining a detailed understanding of the energetics of the proton pumping process in cytochrome c oxidase (CcO) is one of the challenges of modern biophysics. Although there are several current mechanistic proposals, most of these ideas have not been subjected to consistent structure-function considerations. In particular most works have not related the activation barriers for different mechanistic proposals to the protein structure. The present work describes a general approach for exploring the energetics of different feasible models of the action of CcO, using the observed protein structure, established simulation methods and a modified Marcus' formulation. We start by reviewing our methods for evaluation of the energy diagrams for different proton translocation paths and then present a systematic analysis of various constraints that should be imposed on any energy diagram for the pumping process. After the general analysis we turn to the actual computational study, where we construct energy diagrams for forward and backward paths, using the estimated calculated reduction potentials and pKa values of all the relevant sites (including internal water molecules). We then explore the relationship between the calculated energy diagrams and key experimental constraints. This comparison allows us to identify some barriers that are not fully consistent with the overall requirement for an efficient pumping. In particular we identify back leakage channels, which are hard to block without stopping the forward channels. This helps to identify open problems that will require further experimental and theoretical studies. We also consider reasonable adjustments of the calculated barriers that may lead to a working pump. Although the present analysis does not establish a unique and workable model for the mechanism of CcO, it presents what is probably the most consistent current analysis of the barriers for different feasible pathways. Perhaps more importantly, the framework developed here should provide a general way for examining any proposal for the action of CcO as well as for the analysis of further experimental findings about the action of this fascinating system.  相似文献   

7.
Energy diagrams and mechanism for proton pumping in cytochrome c oxidase   总被引:1,自引:0,他引:1  
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a(3) as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pK(a) values during the pumping process are derived for comparison to experiments.  相似文献   

8.
The nucleotidyl transfer reaction catalyzed by DNA polymerases is the critical step governing the accurate transfer of genetic information during DNA replication, and its malfunctioning can cause mutations leading to human diseases, including cancer. Here, utilizing ab initio quantum mechanical/molecular mechanical calculations with free-energy perturbation, we carried out an extensive investigation of the nucleotidyl transfer reaction mechanism in the well-characterized high-fidelity replicative DNA polymerase from phage T7. Our defined mechanism entails an initial concerted deprotonation of a conserved crystal water molecule with protonation of the γ-phosphate of the deoxynucleotide triphosphate(dNTP) via a solvent water molecule, and then the proton on the primer 3′-terminus is transferred to the resulting hydroxide ion. Subsequently, the nucleophilic attack takes place, with the formation of a metastable pentacovalent phosphorane intermediate. Finally, the pyrophosphate leaves, facilitated by the relay of the proton on the γ-phosphate to the α-β bridging oxygen via solvent water. The computed activation free-energy barrier is consistent with kinetic data for the chemistry step with correct nucleotide incorporation in T7 DNA polymerase. This variant of the water-mediated and substrate-assisted mechanism has features tailored to the structure of the T7 DNA polymerase. However, a unifying theme in the water-mediated and substrate-assisted mechanism is the cycling through crystal and solvent water molecules of the proton originating from the primer 3′-terminus to the α-β bridging oxygen of the deoxynucleotide triphosphate; this neutralizes the evolving negative charge as pyrophosphate leaves and restores the polymerase to its pre-chemistry state. These unifying features are likely requisite elements for nucleotidyl transfer reactions.  相似文献   

9.
This minireview addresses questions on the mechanism of oxidative water cleavage with special emphasis on the coupling of electron (ET) and proton transfer (PT) of each individual redox step of the reaction sequence and on the mode of O-O bond formation. The following topics are discussed: (1) the multiphasic kinetics of Y(Z)(ox) formation by P680(+*) originate from three different types of rate limitations: (i) nonadiabatic electron transfer for the "fast" ns reaction, (ii) local "dielectric" relaxation for the "slow" ns reaction, and (iii) "large-scale" proton shift for the micros kinetics; (2) the ET/PT-coupling mode of the individual redox transitions within the water oxidizing complex (WOC) driven by Y(Z)(ox) is assumed to depend on the redox state S(i): the oxidation steps of S(0) and S(1) comprise separate ET and PT pathways while those of S(2) and S(3) take place via proton-coupled electron transfer (PCET) analogous to Jerry Babcock's hydrogen atom abstractor model [Biochim. Biophys. Acta, 1458 (2000) 199]; (3) S(3) is postulated to be a multistate redox level of the WOC with fast dynamic equilibria of both redox isomerism and proton tautomerism. The primary event in the essential O-O bond formation is the population of a state S(3)(P) characterized by an electronic configuration and nuclear geometry that corresponds with a complexed hydrogen peroxide; (4) the peroxidic type S(3)(P) is the entatic state for formation of complexed molecular oxygen through S(3) oxidation by Y(Z)(ox); and (5) the protein matrix itself is proposed to exert catalytic activity by functioning as "PCET director". The WOC is envisaged as a supermolecule that is especially tailored for oxidative water cleavage and acts as a molecular machine.  相似文献   

10.
The haem-copper oxidases comprise a large family of enzymes that is widespread among aerobic organisms. These remarkable membrane-bound proteins catalyse the respiratory reduction of dioxygen to water, and conserve free energy from this reaction by operating as proton pumps. The mechanism of redox-dependent proton translocation has been elusive despite the availability of high resolution crystal structures from several oxidases. Here, we discuss some recent as well as some older results that may shed light on this mechanism. We conclude that proton-pumping is initiated by vectorial proton transfer from a conserved glutamic acid (Glu242 in the bovine enzyme) to a proton acceptor above the haem groups, and that this primary event is mechanistically coupled to electron transfer from haem a to the binuclear haem a3/CuB centre. Subsequently, Glu242 is reprotonated from the negatively charged side of the membrane. Next this proton is transferred to the binuclear site to complete the chemistry, Glu242 is reprotonated once more, and the "prepumped" proton is ejected on the opposite side of the membrane. The different kinetics of electron-coupled proton transfer in different steps of the catalytic cycle may be related to differences in the driving force due to different Em values of the electron acceptor in the binuclear site.  相似文献   

11.
Y Y Sham  I Muegge  A Warshel 《Proteins》1999,36(4):484-500
A general method for simulating proton translocations in proteins and for exploring the role of different proton transfer pathways is developed and examined. The method evaluates the rate constants for proton transfer processes using the energetics of the relevant proton configurations. The energies (DeltaG((m))) of the different protonation states are evaluated in two steps. First, the semimicroscopic version of the protein dipole Langevin dipole (PDLD/S) method is used to evaluate the intrinsic energy of bringing the protons to their protein sites, when the charges of all protein ionized residues are set to zero. Second, the interactions between the charged groups are evaluated by using a Coulomb's Law with an effective dielectric constant. This approach, which was introduced in an earlier study by one of the authors of the current report, allows for a very fast determination of any DeltaG((m)) and for practical evaluation of the time-dependent proton population: That is, the rate constants for proton transfer processes are evaluated by using the corresponding DeltaG((m)) values and a Marcus type relationship. These rate constants are then used to construct a master equation, the integration of which by a fourth-order Runge-Kutta method yields the proton population as a function of time. The integration evaluates, 'on the fly,' the changes of the rate constants as a result of the time-dependent changes in charge-charge interaction, and this feature benefits from the fast determination of DeltaG((m)). The method is demonstrated in a preliminary study of proton translocation processes in the reaction center of Rhodobacter sphaeroides. It is found that proton transfer across water chains involves significant activation barriers and that ionized protein residues probably are involved in the proton transfer pathways. The potential of the present method in analyzing mutation experiments is discussed briefly and illustrated. The present study also examines different views of the nature of proton translocations in proteins. It is shown that such processes are controlled mainly by the electrostatic interaction between the proton site and its surroundings rather than by the local bond rearrangements of water molecules that are involved in the proton pathways. Thus, the overall rate of proton transport frequently is controlled by the highest barrier along the conduction pathway. Proteins 1999;36:484-500.  相似文献   

12.
We derive the analytical form of a rate-equilibrium free-energy relationship (with slope Phi) for a bounded, linear chain of coupled reactions having arbitrary connecting rate constants. The results confirm previous simulation studies showing that Phi-values reflect the position of the perturbed reaction within the chain, with reactions occurring earlier in the sequence producing higher Phi-values than those occurring later in the sequence. The derivation includes an expression for the transmission coefficients of the overall reaction based on the rate constants of an arbitrary, discrete, finite Markov chain. The results indicate that experimental Phi-values can be used to calculate the relative heights of the energy barriers between intermediate states of the chain but provide no information about the energies of the wells along the reaction path. Application of the equations to the case of diliganded acetylcholine receptor channel gating suggests that the transition-state ensemble for this reaction is nearly flat. Although this mechanism accounts for many of the basic features of diliganded and unliganded acetylcholine receptor channel gating, the experimental rate-equilibrium free-energy relationships appear to be more linear than those predicted by the theory.  相似文献   

13.
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a3 as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pKa values during the pumping process are derived for comparison to experiments.  相似文献   

14.
Kristina Faxén 《BBA》2007,1767(5):381-386
Cytochrome c oxidase is the terminal enzyme in the respiratory chains of mitochondria and many bacteria where it translocates protons across a membrane thereby maintaining an electrochemical proton gradient. Results from earlier studies on detergent-solubilized cytochrome c oxidase have shown that individual reaction steps associated with proton pumping display pH-dependent kinetics. Here, we investigated the effect of pH on the kinetics of these reaction steps with membrane-reconstituted cytochrome c oxidase such that the pH was adjusted to different values on the inside and outside of the membrane. The results show that the pH on the inside of the membrane fully determines the kinetics of internal electron transfers that are linked to proton pumping. Thus, even though proton release is rate limiting for these reaction steps (Salomonsson et al., Proc. Natl. Acad. Sci. USA, 2005, 102, 17624), the transition kinetics is insensitive to the outside pH (in the range 6-9.5).  相似文献   

15.
Antibodies were raised against conserved amino acid sequences in four extramembranous portions of subunit III (sIII) from beef cytochrome c oxidase (COX) and the role of these domains in the functional activities of the enzyme was investigated. The binding of one antipeptide antibody corresponding to an externally exposed (facing the intermembrane space) domain of COX sIII (amino acids 180-189 in the primary sequence) exhibited a 30-50% stimulation of electron transfer activity in both detergent-dispersed COX and COX incorporated into phospholipid vesicles (COV). Antibody binding to two different matrix-faced domains (amino acids 57-66 and 148-159 in the sequence) resulted in small stimulations (10-25%) of COX electron transfer activity. The remaining antipeptide antibody (against amino acids 119-128) had no effect on electron transfer activity of COX in detergent solution, but exhibited a slight inhibition of activity (15%) in COV. The mechanism of antibody-induced stimulation of COX electron transfer activity was determined to be an increase in the maximum velocity of the enzyme and not due to a change in the apparent K(m) of cytochrome c interaction with COX as determined by steady state kinetic assays. Antibody binding to COX in COV increased the respiratory control ratio (an indicator of endogenous proton permeability) of COV, but had no effect on the vectorial proton pumping activity of COV. These results suggest that these conserved, hydrophilic domains of COX sIII are conformationally linked to the electron transfer function of the enzyme in subunits I and II and that sIII may serve as a regulatory subunit for COX electron transfer and proton pumping activities.  相似文献   

16.
In at least one component of the mitochondrial respiratory chain, cytochrome c oxidase, exothermic electron transfer reactions are used to drive vectorial proton transport against an electrochemical hydrogen ion gradient across the mitochondrial inner membrane. The role of the gating of electrons (the regulation of the rates of electron transfer into and out of the proton transport site) in this coupling between electron transfer and proton pumping has been explored. The approach involves the solution of the steady-state rate equations pertinent to proton pump models which include, to various degrees, the uncoupled (i.e., not linked to proton pumping) electron transfer processes which are likely to occur in any real electron transfer-driven proton pump. This analysis furnishes a quantitative framework for examining the effects of variations in proton binding site pKas and metal center reduction potentials, the relationship between energy conservation efficiency and turnover rate, the conditions for maximum power output or minimum heat production, and required efficiency of the gating of electrons. Some novel conclusions emerge from the analysis, including: An efficient electron transfer-driven proton pump need not exhibit a pH-dependent reduction potential; Very efficient gating of electrons is required for efficient electron transfer driven proton pumping, especially when a reasonable correlation of electron transfer rate and electron transfer exoergonicity is assumed; and A consideration of the importance and possible mechanisms of the gating of electrons suggests that efficient proton pumping by CuA in cytochrome oxidase could, in principle, take place with structural changes confined to the immediate vicinity of the copper ion, while proton pumping by Fea would probably require conformational coupling between the iron and more remote structures in the enzyme. The conclusions are discussed with reference to proton pumping by cytochrome c oxidase, and some possible implications for oxidative phosphorylation are noted.  相似文献   

17.
The mechanism for proton pumping in cytochrome c oxidase in the respiratory chain, has for decades been one of the main unsolved problems in biochemistry. However, even though several different suggested mechanisms exist, many of the steps in these mechanisms are quite similar and constitute a general consensus framework for discussing proton pumping. When these steps are analyzed, at least three critical gating situations are found, and these points are where the suggested mechanisms in general differ. The requirements for gating are reviewed and analyzed in detail, and a mechanism is suggested, where solutions for all the gating situations are formulated. This mechanism is based on an electrostatic analysis of a kinetic experiment fior the O to E transition. The key component of the mechanism is a positively charged transition state. An electron on heme a opens the gate for proton transfer from the N-side to a pump loading site (PLS). When the negative charge of the electron is compensated by a chemical proton, the positive transition state prevents backflow from the PLS to the N-side at the most critical stage of the pumping process. The mechanism has now been tested by large model DFT calculations, and these calculations give strong support for the suggested mechanism.  相似文献   

18.
We report on the implementation of proton transfer reaction‐mass spectrometry (PTR‐MS) technology for on‐line monitoring of volatile organic compounds (VOCs) in the off‐gas of bioreactors. The main part of the work was focused on the development of an interface between the bioreactor and an analyzer suitable for continuous sampling of VOCs emanating from the bioprocess. The permanently heated sampling line with an inert surface avoids condensation and interaction of volatiles during transfer to the PTR‐MS. The interface is equipped with a sterile sinter filter unit directly connected to the bioreactor headspace, a condensate trap, and a series of valves allowing for dilution of the headspace gas, in‐process calibration, and multiport operation. To assess the aptitude of the entire system, a case study was conducted comprising three identical cultivations with a recombinant E. coli strain, and the volatiles produced in the course of the experiments were monitored with the PTR‐MS. The high reproducibility of the measurements proved that the established sampling interface allows for reproducible transfer of volatiles from the headspace to the PTR‐MS analyzer. The set of volatile compounds monitored comprises metabolites of different pathways with diverse functions in cell physiology but also volatiles from the process matrix. The trends of individual compounds showed diverse patterns. The recorded signal levels covered a dynamic range of more than five orders of magnitude. It was possible to assign specific volatile compounds to distinctive events in the bioprocess. The presented results clearly show that PTR‐MS was successfully implemented as a powerful bioprocess‐monitoring tool and that access to volatiles emitted by the cells opens promising perspectives in terms of advanced process control. Biotechnol. Bioeng. 2012; 109: 3059–3069. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The energetics of the mechanism of proton transfer from a hydronium ion to one of the water molecules in its first solvation shell are studied using density functional theory and the Møller–Plesset perturbation (MP2) method. The potential energy surface of the proton transfer mechanism is obtained at the B3LYP and MP2 levels with the 6-311++G** basis set. Many-body analysis is applied to the proton transfer mechanism to obtain the change in relaxation energy, two-body, three-body and four-body energies when proton transfer occurs from the hydronium ion to one of the water molecules in its first solvation shell. It is observed that the binding energy (BE) of the complex decreases during the proton transfer process at both levels of theory. During the proton transfer process, the % contribution of the total two-body energy to the binding energy of the complex increases from 62.9 to 68.09% (39.9 to 45.95%), and that of the total three-body increases from 25.9 to 27.09% (24.16 to 26.17%) at the B3LYP/6-311++G** (MP2/ 6-311++G**) level. There is almost no change in the water–water–water three-body interaction energy during the proton transfer process at both levels of theory. The contribution of the relaxation energy and the total four-body energy to the binding energy of the complex is greater at the MP2 level than at the B3LYP level. Significant differences are found between the relaxation energies, the hydronium–water interaction energies and the four-body interaction energies at the B3LYP and MP2 levels.  相似文献   

20.
The cytochrome c oxidase complex (CcO) catalyzes the four-electron reduction of dioxygen to water by using electrons from ferrocytochrome c. Redox free energy released in this highly exergonic process is utilized to drive the translocation of protons across a transmembrane electrochemical gradient. Although numerous chemical models of proton pumping have been developed, few attempts have been made to explain the stepwise transfer of energy in the context of proposed protein conformational changes. A model is described that seeks to clarify the thermodynamics of the proton pumping function of CcO and that illustrates the importance of electron and proton gating to prevent the occurrence of the more exergonic electron leak and proton slip reactions. The redox energy of the CcO-membrane system is formulated in terms of a multidimensional energy surface projected into two dimensions, a nuclear coordinate associated with electron transfer and a nuclear coordinate associated with elements of the proton pump. This model provides an understanding of how a transmembrane electrochemical gradient affects the efficiency of the proton pumping process. Specifically, electron leak and proton slip reactions become kinetically viable as a result of the greater energy barriers that develop for the desired reactions in the presence of a transmembrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号