首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A number of computational tools are available for detecting signal peptides, but their abilities to locate the signal peptide cleavage sites vary significantly and are often less than satisfactory. We characterized a set of 270 secreted recombinant human proteins by automated Edman analysis and used the verified cleavage sites to evaluate the success rate of a number of computational prediction programs. An examination of the frequency of amino acid in the N-terminal region of the data set showed a preference of proline and glutamine but a bias against tyrosine. The data set was compared to the SWISS-PROT database and revealed a high percentage of discrepancies with cleavage site annotations that were computationally generated. The best program for predicting signal sequences was found to be SignalP 2.0-NN with an accuracy of 78.1% for cleavage site recognition. The new data set can be utilized for refining prediction algorithms, and we have built an improved version of profile hidden Markov model for signal peptides based on the new data.  相似文献   

2.
MOTIVATION: The subcellular location of a protein is closely correlated to its function. Thus, computational prediction of subcellular locations from the amino acid sequence information would help annotation and functional prediction of protein coding genes in complete genomes. We have developed a method based on support vector machines (SVMs). RESULTS: We considered 12 subcellular locations in eukaryotic cells: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracellular medium, Golgi apparatus, lysosome, mitochondrion, nucleus, peroxisome, plasma membrane, and vacuole. We constructed a data set of proteins with known locations from the SWISS-PROT database. A set of SVMs was trained to predict the subcellular location of a given protein based on its amino acid, amino acid pair, and gapped amino acid pair compositions. The predictors based on these different compositions were then combined using a voting scheme. Results obtained through 5-fold cross-validation tests showed an improvement in prediction accuracy over the algorithm based on the amino acid composition only. This prediction method is available via the Internet.  相似文献   

3.
We present an approach to predicting protein structural class that uses amino acid composition and hydrophobic pattern frequency information as input to two types of neural networks: (1) a three-layer back-propagation network and (2) a learning vector quantization network. The results of these methods are compared to those obtained from a modified Euclidean statistical clustering algorithm. The protein sequence data used to drive these algorithms consist of the normalized frequency of up to 20 amino acid types and six hydrophobic amino acid patterns. From these frequency values the structural class predictions for each protein (all-alpha, all-beta, or alpha-beta classes) are derived. Examples consisting of 64 previously classified proteins were randomly divided into multiple training (56 proteins) and test (8 proteins) sets. The best performing algorithm on the test sets was the learning vector quantization network using 17 inputs, obtaining a prediction accuracy of 80.2%. The Matthews correlation coefficients are statistically significant for all algorithms and all structural classes. The differences between algorithms are in general not statistically significant. These results show that information exists in protein primary sequences that is easily obtainable and useful for the prediction of protein structural class by neural networks as well as by standard statistical clustering algorithms.  相似文献   

4.
Protein homology detection using string alignment kernels   总被引:2,自引:0,他引:2  
MOTIVATION: Remote homology detection between protein sequences is a central problem in computational biology. Discriminative methods involving support vector machines (SVMs) are currently the most effective methods for the problem of superfamily recognition in the Structural Classification Of Proteins (SCOP) database. The performance of SVMs depends critically on the kernel function used to quantify the similarity between sequences. RESULTS: We propose new kernels for strings adapted to biological sequences, which we call local alignment kernels. These kernels measure the similarity between two sequences by summing up scores obtained from local alignments with gaps of the sequences. When tested in combination with SVM on their ability to recognize SCOP superfamilies on a benchmark dataset, the new kernels outperform state-of-the-art methods for remote homology detection. AVAILABILITY: Software and data available upon request.  相似文献   

5.
6.
In principle, structural information of protein sequences with no detectable homology to a protein of known structure could be obtained by predicting the arrangement of their secondary structural elements. Although some ab initio methods for protein structure prediction have been reported, the long-range interactions required to accurately predict tertiary structures of β-sheet containing proteins are still difficult to simulate. To remedy this problem and facilitate de novo prediction of β-sheet containing protein structures, we developed a support vector machine (SVM) approach that classified parallel and antiparallel orientation of β-strands by using the information of interstrand amino acid pairing preferences. Based on a second-order statistics on the relative frequencies of each possible interstrand amino acid pair, we defined an average amino acid pairing encoding matrix (APEM) for encoding β-strands as input in the prediction model. As a result, a prediction accuracy of 86.89% and a Matthew's correlation coefficient value of 0.71 have been achieved through 7-fold cross-validation on a non-redundant protein dataset from PISCES. Although several issues still remain to be studied, the method presented here to some extent could indicate the important contribution of the amino acid pairs to the β-strand orientation, and provide a possible way to further be combined with other algorithms making a full ‘identification’ of β-strands.  相似文献   

7.
In this study, the predictors are developed for protein submitochondria locations based on various features of sequences. Information about the submitochondria location for a mitochondria protein can provide much better understanding about its function. We use ten representative models of protein samples such as pseudo amino acid composition, dipeptide composition, functional domain composition, the combining discrete model based on prediction of solvent accessibility and secondary structure elements, the discrete model of pairwise sequence similarity, etc. We construct a predictor based on support vector machines (SVMs) for each representative model. The overall prediction accuracy by the leave-one-out cross validation test obtained by the predictor which is based on the discrete model of pairwise sequence similarity is 1% better than the best computational system that exists for this problem. Moreover, we develop a method based on ordered weighted averaging (OWA) which is one of the fusion data operators. Therefore, OWA is applied on the 11 best SVM-based classifiers that are constructed based on various features of sequence. This method is called Mito-Loc. The overall leave-one-out cross validation accuracy obtained by Mito-Loc is about 95%. This indicates that our proposed approach (Mito-Loc) is superior to the result of the best existing approach which has already been reported.  相似文献   

8.
9.
10.
A computational system for the prediction and classification of human G-protein coupled receptors (GPCRs) has been developed based on the support vector machine (SVM) method and protein sequence information. The feature vectors used to develop the SVM prediction models consist of statistically significant features selected from single amino acid, dipeptide, and tripeptide compositions of protein sequences. Furthermore, the length distribution difference between GPCRs and non-GPCRs has also been exploited to improve the prediction performance. The testing results with annotated human protein sequences demonstrate that this system can get good performance for both prediction and classification of human GPCRs.  相似文献   

11.
Zhang TL  Ding YS 《Amino acids》2007,33(4):623-629
Compared with the conventional amino acid composition (AA), the pseudo amino acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence; this remarkably enhances the power to use a discrete model for predicting various attributes of a protein. In this study, based on the concept of Chou's PseAA, a 46-D (dimensional) PseAA was formulated to represent the sample of a protein and a new approach based on binary-tree support vector machines (BTSVMs) was proposed to predict the protein structural class. BTSVMs algorithm has the capability in solving the problem of unclassifiable data points in multi-class SVMs. The results by both the 10-fold cross-validation and jackknife tests demonstrate that the predictive performance using the new PseAA (46-D) is better than that of AA (20-D), which is widely used in many algorithms for protein structural class prediction. The results obtained by the new approach are quite encouraging, indicating that it can at least play a complimentary role to many of the existing methods and is a useful tool for predicting many other protein attributes as well.  相似文献   

12.
The calpain family of Ca2+‐dependent cysteine proteases plays a vital role in many important biological processes which is closely related with a variety of pathological states. Activated calpains selectively cleave relevant substrates at specific cleavage sites, yielding multiple fragments that can have different functions from the intact substrate protein. Until now, our knowledge about the calpain functions and their substrate cleavage mechanisms are limited because the experimental determination and validation on calpain binding are usually laborious and expensive. In this work, we aim to develop a new computational approach (LabCaS) for accurate prediction of the calpain substrate cleavage sites from amino acid sequences. To overcome the imbalance of negative and positive samples in the machine‐learning training which have been suffered by most of the former approaches when splitting sequences into short peptides, we designed a conditional random field algorithm that can label the potential cleavage sites directly from the entire sequences. By integrating the multiple amino acid features and those derived from sequences, LabCaS achieves an accurate recognition of the cleave sites for most calpain proteins. In a jackknife test on a set of 129 benchmark proteins, LabCaS generates an AUC score 0.862. The LabCaS program is freely available at: http://www.csbio.sjtu.edu.cn/bioinf/LabCaS . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
The prediction of translation initiation sites (TISs) in eukaryotic mRNAs has been a challenging problem in computational molecular biology. In this paper, we present a new algorithm to recognize TISs with a very high accuracy. Our algorithm includes two novel ideas. First, we introduce a class of new sequence-similarity kernels based on string editing, called edit kernels, for use with support vector machines (SVMs) in a discriminative approach to predict TISs. The edit kernels are simple and have significant biological and probabilistic interpretations. Although the edit kernels are not positive definite, it is easy to make the kernel matrix positive definite by adjusting the parameters. Second, we convert the region of an input mRNA sequence downstream to a putative TIS into an amino acid sequence before applying SVMs to avoid the high redundancy in the genetic code. The algorithm has been implemented and tested on previously published data. Our experimental results on real mRNA data show that both ideas improve the prediction accuracy greatly and that our method performs significantly better than those based on neural networks and SVMs with polynomial kernels or Salzberg kernels.  相似文献   

14.
In the post-genome era, the prediction of protein function is one of the most demanding tasks in the study of bioinformatics. Machine learning methods, such as the support vector machines (SVMs), greatly help to improve the classification of protein function. In this work, we integrated SVMs, protein sequence amino acid composition, and associated physicochemical properties into the study of nucleic-acid-binding proteins prediction. We developed the binary classifications for rRNA-, RNA-, DNA-binding proteins that play an important role in the control of many cell processes. Each SVM predicts whether a protein belongs to rRNA-, RNA-, or DNA-binding protein class. Self-consistency and jackknife tests were performed on the protein data sets in which the sequences identity was < 25%. Test results show that the accuracies of rRNA-, RNA-, DNA-binding SVMs predictions are approximately 84%, approximately 78%, approximately 72%, respectively. The predictions were also performed on the ambiguous and negative data set. The results demonstrate that the predicted scores of proteins in the ambiguous data set by RNA- and DNA-binding SVM models were distributed around zero, while most proteins in the negative data set were predicted as negative scores by all three SVMs. The score distributions agree well with the prior knowledge of those proteins and show the effectiveness of sequence associated physicochemical properties in the protein function prediction. The software is available from the author upon request.  相似文献   

15.
Shi JY  Zhang SW  Pan Q  Cheng YM  Xie J 《Amino acids》2007,33(1):69-74
As more and more genomes have been discovered in recent years, there is an urgent need to develop a reliable method to predict the subcellular localization for the explosion of newly found proteins. However, many well-known prediction methods based on amino acid composition have problems utilizing the sequence-order information. Here, based on the concept of Chou's pseudo amino acid composition (PseAA), a new feature extraction method, the multi-scale energy (MSE) approach, is introduced to incorporate the sequence-order information. First, a protein sequence was mapped to a digital signal using the amino acid index. Then, by wavelet transform, the mapped signal was broken down into several scales in which the energy factors were calculated and further formed into an MSE feature vector. Following this, combining this MSE feature vector with amino acid composition (AA), we constructed a series of MSEPseAA feature vectors to represent the protein subcellular localization sequences. Finally, according to a new kind of normalization approach, the MSEPseAA feature vectors were normalized to form the improved MSEPseAA vectors, named as IEPseAA. Using the technique of IEPseAA, C-support vector machine (C-SVM) and three multi-class SVMs strategies, quite promising results were obtained, indicating that MSE is quite effective in reflecting the sequence-order effects and might become a useful tool for predicting the other attributes of proteins as well.  相似文献   

16.
Protein remote homology detection is one of the most important problems in bioinformatics. Discriminative methods such as support vector machines (SVM) have shown superior performance. However, the performance of SVM-based methods depends on the vector representations of the protein sequences. Prior works have demonstrated that sequence-order effects are relevant for discrimination, but little work has explored how to incorporate the sequence-order information along with the amino acid physicochemical properties into the prediction. In order to incorporate the sequence-order effects into the protein remote homology detection, the physicochemical distance transformation (PDT) method is proposed. Each protein sequence is converted into a series of numbers by using the physicochemical property scores in the amino acid index (AAIndex), and then the sequence is converted into a fixed length vector by PDT. The sequence-order information can be efficiently included into the feature vector with little computational cost by this approach. Finally, the feature vectors are input into a support vector machine classifier to detect the protein remote homologies. Our experiments on a well-known benchmark show the proposed method SVM-PDT achieves superior or comparable performance with current state-of-the-art methods and its computational cost is considerably superior to those of other methods. When the evolutionary information extracted from the frequency profiles is combined with the PDT method, the profile-based PDT approach can improve the performance by 3.4% and 11.4% in terms of ROC score and ROC50 score respectively. The local sequence-order information of the protein can be efficiently captured by the proposed PDT and the physicochemical properties extracted from the amino acid index are incorporated into the prediction. The physicochemical distance transformation provides a general framework, which would be a valuable tool for protein-level study.  相似文献   

17.
Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.  相似文献   

18.
19.
A method for identifying the positions in the amino acid sequence, which are critical for the catalytic activity of a protein using support vector machines (SVMs) is introduced and analysed. SVMs are supported by an efficient learning algorithm and can utilize some prior knowledge about the structure of the problem. The amino acid sequences of the variants of a protein, created by inducing mutations, along with their fitness are required as input data by the method to predict its critical positions. To investigate the performance of this algorithm, variants of the beta-lactamase enzyme were created in silico using simulations of both mutagenesis and recombination protocols. Results from literature on beta-lactamase were used to test the accuracy of this method. It was also compared with the results from a simple search algorithm. The algorithm was also shown to be able to predict critical positions that can tolerate two different amino acids and retain function.  相似文献   

20.
Secondary structure prediction is a crucial task for understanding the variety of protein structures and performed biological functions. Prediction of secondary structures for new proteins using their amino acid sequences is of fundamental importance in bioinformatics. We propose a novel technique to predict protein secondary structures based on position-specific scoring matrices (PSSMs) and physico-chemical properties of amino acids. It is a two stage approach involving multiclass support vector machines (SVMs) as classifiers for three different structural conformations, viz., helix, sheet and coil. In the first stage, PSSMs obtained from PSI-BLAST and five specially selected physicochemical properties of amino acids are fed into SVMs as features for sequence-to-structure prediction. Confidence values for forming helix, sheet and coil that are obtained from the first stage SVM are then used in the second stage SVM for performing structure-to-structure prediction. The two-stage cascaded classifiers (PSP_MCSVM) are trained with proteins from RS126 dataset. The classifiers are finally tested on target proteins of critical assessment of protein structure prediction experiment-9 (CASP9). PSP_MCSVM with brainstorming consensus procedure performs better than the prediction servers like Predator, DSC, SIMPA96, for randomly selected proteins from CASP9 targets. The overall performance is found to be comparable with the current state-of-the art. PSP_MCSVM source code, train-test datasets and supplementary files are available freely in public domain at: and  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号