首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Replicative DNA polymerase interacts with processivity factors, the β‐­subunit of DNA polymerase III or proliferating cell nuclear antigen (PCNA), in order to function with a long template DNA. The archaeal replicative DNA polymerase from Pyrococcus furiosus interacts with PCNA via its PCNA‐interacting protein (PIP) motif at the C‐terminus. The PCNA homotrimeric ring contains one PIP interacting site on each monomer and since the ring can accommodate up to three molecules simultaneously, formation of a stable stoichiometric complex of PCNA with its interacting protein has been difficult to control in vitro. A stable complex of the DNA polymerase with PCNA, using a PCNA monomer mutant, has been purified and crystallized. The best ordered crystal diffracted to 3.0 Å resolution using synchrotron radiation. The crystals belong to space group P21212, with unit‐cell parameters a = 225.3, b = 123.3, c = 91.3 Å.  相似文献   

2.
  总被引:17,自引:0,他引:17  
DNAbeta is a type of single-stranded (ss) circular satellite DNA found in association with monopartite-genome begomoviruses, such as Tomato yellow leaf curl China virus isolate Y10 (TYLCCNV-Y10). Y10 DNAbeta is required for symptom expression in plants but depends on TYLCCNV-Y10 genomic DNA (DNA-A) for replication and encapsidation. When we converted DNAbeta into a gene-silencing vector (modified DNAbeta (DNAmbeta)) by replacing its C1 open-reading frame (ORF) with a multiple cloning site (MCS), it was replicated but no longer induced symptoms in association with TYLCCNV-Y10 DNA-A, so allowing the effects of gene inserts to be recognized easily. Insertion into DNAmbeta of sequences from any of the three host genes (proliferating cell nuclear antigen (PCNA), phytoene desaturase (PDS), and sulfur (Su)), or from a transgene (green fluorescent protein (GFP)), resulted in silencing of the cognate gene in Nicotiana benthamiana. The silencing persisted for more than a month and was associated with decreased levels of mRNA of the gene targeted. Although DNAmbeta probably does not enter meristematic tissue, the PCNA gene could be silenced there. DNAmbeta was an effective silencing vector in tested N. glutinosa, N. tabacum Samsun (NN or nn), and Lycopersicon esculentum plants, and was able to silence two genes simultaneously. This satellite DNA vector-based form of virus-induced gene silencing (VIGS) promises to be applicable to other begomovirus/DNAbeta systems, which are recently reported to occur in several dicotyledonous crop species, thereby providing a powerful approach to gene discovery and the analysis of gene function in these crops.  相似文献   

3.
The ChlH gene coding the H subunit of magnesium chelatase, an enzyme involved in chlorophyll biosynthesis, was silenced in Nicotiana benthamiana plants by infection with tobacco mosaic virus vectors (pTMV-30b) containing 67, 214 or 549 nt long ChlH inserts. Silencing of the nuclear ChlH gene induced a chimeric phenotype with green and yellow/white leaves associated with alterations of chloroplast shape and ultrastructure. The symptoms became first evident around veins of young leaves, and only later in the mesophyll tissues. The efficiency of gene silencing was not dependent on the insert orientation, but was strongly correlated with the size of the ChlH insert, providing a flexible method to modulate the level of gene suppression. Silencing efficiency seemed to be strongly dependent on endogenous ChlH mRNA level of the target tissue. Silencing of the ChlH gene with the longest fragment of 549 nt also lowered the accumulation of ChlD and chlorophyll synthetase mRNAs, i.e. other genes involved in chlorophyll biosynthesis.  相似文献   

4.
  总被引:3,自引:0,他引:3  
We developed a novel, two-component transient gene silencing system in which the satellite tobacco mosaic virus (STMV) is used as vector for the delivery of inhibitory RNA into tobacco plants and the tobacco mosaic virus strain U2 (TMV-U2) is used as helper virus for supplying replication and movement proteins in trans. The main advantage of the system is that by uncoupling virus replication components from silencing induction components, the intensity of silencing becomes more pronounced. We call this system satellite virus-induced silencing system (SVISS) and will demonstrate here its robustness, speed and effectiveness. We were able to obtain pronounced and severe knockout phenotypes for a range of targeted endogenous genes belonging to various biochemical pathways and expressed in different plant tissues, such as genes involved in leaf and flower pigmentation, genes for cell wall synthesis in leaf, stem and root tissues or a ubiquitous RNA polymerase gene. By tandem insertion of more than one target gene sequence into the vector, we were able to induce simultaneous knockouts of an endogenous gene and a transgene. SVISS is the first transient gene silencing system for Nicotiana tabacum, which is a genetically well-characterized bridging species for the Solanaceae plant family.  相似文献   

5.
    
Proliferating cell nuclear antigen (PCNA) is a DNA sliding clamp which confers processivity on replicative DNA polymerases. PCNA also acts as a sliding platform that enables the association of many DNA‐processing proteins with DNA in a non‐sequence‐specific manner. In this investigation, the PCNA from the hyperthermophilic archaeon Thermococcus thioreducens (TtPCNA) was cloned, overexpressed in Escherichia coli and purified to greater than 90% homogeneity. TtPCNA crystals were obtained by sitting‐drop vapor‐diffusion methods and the best ordered crystal diffracted to 1.86 Å resolution using synchrotron radiation. The crystals belonged to the hexagonal space group P63, with unit‐cell parameters a = b = 89.0, c = 62.8 Å. Crystals of TtPCNA proved to be amenable to complete X‐ray analysis and future structure determination.  相似文献   

6.
    
Proliferating cell nuclear antigen (PCNA), a member of the sliding clamp family of proteins, interacts specifically with DNA replication and repair proteins through a small peptide motif called the PCNA‐interacting protein or PIP box. PCNA is recognized as one of the key proteins involved in DNA metabolism. In the present study, the recombinant PCNA from Litopenaeus vannamei (LvPCNA) was heterologously overexpressed and purified using metal ion‐affinity chromatography. Crystals suitable for diffraction grew overnight using the hanging‐drop vapour‐diffusion method. LvPCNA crystals belong to space group C2 with unit‐cell parameters a = 144.6, b = 83.4, c = 74.3 Å, β = 117.6°. One data set was processed to 3 Å resolution, with an overall Rmeas of 0.09 and a completeness of 93.3%. Initial phases were obtained by molecular replacement using a homology model of LvPCNA as the search model. Refinement and structural analysis are underway. This report is the first successful crystallographic analysis of a marine crustacean decapod shrimp (L. vannamei) proliferating cell nuclear antigen.  相似文献   

7.
李园园  陆长德 《生命科学》2003,15(3):143-146
增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)是一种生长调控蛋白,在DNA复制、修复、细胞周期调控、基因外遗传(epigenetic inheritance)等事件的协同机制中发挥重要功能。PCNA的表达调控发生在多个层次,涉及ATFl、CREB、RFXl、p53、E2F等转录因子以及内含子指导的反义RNA等等。  相似文献   

8.
Dynamics of DNA replication factories in living cells   总被引:27,自引:0,他引:27       下载免费PDF全文
DNA replication occurs in microscopically visible complexes at discrete sites (replication foci) in the nucleus. These foci consist of DNA associated with replication machineries, i.e., large protein complexes involved in DNA replication. To study the dynamics of these nuclear replication foci in living cells, we fused proliferating cell nuclear antigen (PCNA), a central component of the replication machinery, with the green fluorescent protein (GFP). Imaging of stable cell lines expressing low levels of GFP-PCNA showed that replication foci are heterogeneous in size and lifetime. Time-lapse studies revealed that replication foci clearly differ from nuclear speckles and coiled bodies as they neither show directional movements, nor do they seem to merge or divide. These four dimensional analyses suggested that replication factories are stably anchored in the nucleus and that changes in the pattern occur through gradual, coordinated, but asynchronous, assembly and disassembly throughout S phase.  相似文献   

9.
Objective. Proliferating cell nuclear antigen (PCNA), one of the target antigen recognized by lupus sera, has been reported to be present as a subnuclear multi-peptide complex. But autoantibodies reacting with components of PCNA complex are poorly understood. To study the specificity of those autoantibodies, immunoreactivities of autoimmune sera against purified PCNA antigen were studied. Methods. PCNA antigens were purified from rabbit thymus extract by affinity column using murine monoclonal antibodies (mAbs) to PCNA, TOB7, TO17 and TO30. Immunoreactivities of autoimmune sera against purified PCNA were analyzed by WB. Results. PCNA antigen purified by serum AK predominantly showed a 34 kD band specific for PCNA in SDS-PAGE. When antigens were purified by anti-PCNA mAb TOB7 and TO30 which are known to be targeting different epitopes on PCNA antigen, SDS-PAGE analysis showed various mol. wt of proteins in addition to the 34 kD PCNA while both AK and mAbs reacted only with 34 kD PCNA in WB. In WB using PCNA purified by TOB7, various immunoreactivities were observed at 150, 66, 58, 48, 45, 37, 32 and 16 kDa in sera from patients with connective tissue diseases. Conclusions. These results suggested that many of the proteins copurified with PCNA were also targets of autoimmune responses and these autoantibody experssion may be induced through antigen-driven mechanisms.Abbreviations mAb monoclonal antibody - PCNA proliferating cell nuclear antigen - PCNA/AK PCNA affinity purified by antibodies from patient serum AK - PCNA/TO30 PCNA purfied by mAb TO30 - PCNA/TOB7 PCNA purified by mAb TOB7 - SLE systemic lupus erythematosus  相似文献   

10.
Virus-induced gene silencing (VIGS) is a rapid and robust method for determining and studying the function of plant genes or expressed sequence tags (ESTs). However, only a few plant species are amenable to VIGS. There is a need for a systematic study to identify VIGS-efficient plant species and to determine the extent of homology required between the heterologous genes and their endogenous orthologs for silencing. Two approaches were used. First, the extent of phytoene desaturase (PDS) gene silencing was studied in various Solanaceous plant species using Nicotiana benthamiana NbPDS sequences. In the second approach, PDS sequences from a wide range of plant species were used to silence the PDS gene in N. benthamiana. The results showed that tobacco rattle virus (TRV)-mediated VIGS can be performed in a wide range of Solanaceous plant species and that heterologous gene sequences from far-related plant species can be used to silence their respective orthologs in the VIGS-efficient plant N. benthamiana. A correlation was not always found between gene silencing efficiency and percentage homology of the heterologous gene sequence with the endogenous gene sequence. It was concluded that a 21-nucleotide stretch of 100% identity between the heterologous and endogenous gene sequences is not absolutely required for gene silencing.  相似文献   

11.
    
A novel gene (GenBank accession No. AF113208) named KCTD10 (potassium channel tetramerisation domain‐containing 10) was cloned from our 5300 EST database of human aorta cDNA library. Computational analysis showed that KCTD10 cDNA is 2,638 bp long, encoding 313 amino acids with a proliferating cell nuclear antigen binding motif, mapped to chromosome 12q24.11 with 7 exons, ubiquitously expressed in all 12 tested normal tissues and 7 of 8 tested tumor cell lines from MTN membranes by Northern blot. Nuclear localization of KCTD10 was observed in A549 cells. Yeast two‐hybrid analysis and immunoprecipitation assay showed that KCTD10 can interact with PCNA. In A549 cells, KCTD10 down‐regulation could inhibit cell proliferation, but its over‐expression could not influence cell proliferation. The results suggest that KCTD10 may be associated with DNA synthesis and cell proliferation. J. Cell. Biochem. 106: 409–413, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
    
Summary Norepinephrine stimulates the growth in size of nondividing neonatal cardiocytes. During this time the neonatal cardiocyte is in a period of transition in which the cell can synthesize DNA and yet does not divide. Because the cell undergoes karyokinesis without cytokinesis the objective of this study was to determine whether the norepinephrine-induced growth in size of the neonatal cardiocyte was accompanied by an increase in a) the number of cardiocytes synthesizing DNA, b) the number of binucleate cardiocytes, and c) organized myofibrils. One- to four-d-old neonatal rat heart cells were isolated and placed in serum-free medium which was then supplemented with serum, norepinephrine, norepinephrine plus propranolol, or isoproterenol. After 4 d the number and size of the cells was determined using a Coulter counter. In other cultures cardiocytes were fixed on Days 0, 1, 2, and 4, and an increase in the number of binucleate cardiocytes was found in all treatment groups including controls. However, the rate of binucleation was faster in the norepinephrine group. It was also determined by proliferating cell nuclear antigen (PCNA) antibody staining that by Day 4, over 50% of the cardiocytes were in the cell cycle. The percentage of cells in which PCNA could be detected was higher in the norepinephrine and norepinephrine plus propranolol groups. Furthermore, there was a concomitant increase in the amount and organization of myofibrils in the catecholamine-treated cardiocytes. Supported in part by grant No. HL 29351 from the National Institutes of Health, by a grant from the American Heart Association and with the support of the Southeastern Pennsylvania and Pennsylvania Affiliates of the American Heart Association.  相似文献   

13.
  总被引:36,自引:0,他引:36  
  相似文献   

14.
Summary Proliferating cell nuclear antigen mRNA levels were determined in human diploid fibroblasts as they progressed through the cell cycle. PCNA message levels were low at G0, gradually increased following entrance into G1, peaked at G1/S, and declined during S phase. PCNA mRNA was determined to have a half life of 12 hours when cells were blocked at the G1/S interface. PCNA protein levels increased two- to three-fold as cells moved from G0 to S phase.  相似文献   

15.
    
In plants, particular micro‐RNAs (miRNAs) induce the production of a class of small interfering RNAs (siRNA) called trans‐acting siRNA (ta‐siRNA) that lead to gene silencing. A single miRNA target is sufficient for the production of ta‐siRNAs, which target can be incorporated into a vector to induce the production of siRNAs, and ultimately gene silencing. The term miRNA‐induced gene silencing (MIGS) has been used to describe such vector systems in Arabidopsis. Several ta‐siRNA loci have been identified in soybean, but, prior to this work, few of the inducing miRNAs have been experimentally validated, much less used to silence genes. Nine ta‐siRNA loci and their respective miRNA targets were identified, and the abundance of the inducing miRNAs varies dramatically in different tissues. The miRNA targets were experimentally verified by silencing a transgenic GFP gene and two endogenous genes in hairy roots and transgenic plants. Small RNAs were produced in patterns consistent with the utilization of the ta‐siRNA pathway. A side‐by‐side experiment demonstrated that MIGS is as effective at inducing gene silencing as traditional hairpin vectors in soybean hairy roots. Soybean plants transformed with MIGS vectors produced siRNAs and silencing was observed in the T1 generation. These results complement previous reports in Arabidopsis by demonstrating that MIGS is an efficient way to produce siRNAs and induce gene silencing in other species, as shown with soybean. The miRNA targets identified here are simple to incorporate into silencing vectors and offer an effective and efficient alternative to other gene silencing strategies.  相似文献   

16.
细胞增殖核抗原(proliferating cell nuclear antigen,PCNA)基因是DNA聚合酶δ的辅助因子,在真核细胞DNA复制及其损伤修复中发挥着重要的作用.采用高效热不对称交互PCR法(high-efficiency thermal asymmetric interlaced PCR,hiTAIL PCR)从小麦西农1 376基因组中扩增得到小麦PCNA基因启动子片段,并命名为TaPCNA启动子. PlantCARE启动子在线分析软件预测含有光应答调控元件(Box I)、脱落酸应答元件(ABRE)、花粉发育应答元件(GGTT motif,GTGA motif)及细胞周期转换结合位点(E2F-binding site)等.为了分析其启动子活性, 通过替换pBI121载体上的CaMV35S启动子,构建了TaPCNA启动子与β-葡糖醛酸酶(GUS)基因的融合表达载体,通过农杆菌介导法在烟草叶片中进行瞬时表达. GUS组织化学染色结果表明,TaPCNA基因启动子能够驱动GUS基因在烟草叶片中表达,证实了所获得的启动子序列具有启动活性.本研究通过hiTAIL-PCR法克隆得到TaPCNA基因的启动子,为深入研究该基因的功能奠定了基础.  相似文献   

17.
Post-transcriptional gene silencing in plants by RNA   总被引:9,自引:0,他引:9  
Yu H  Kumar PP 《Plant cell reports》2003,22(3):167-174
  相似文献   

18.
19.
    
In addition to the canonical right-handed double helix, DNA molecule can adopt several other non-B DNA structures. Readily formed in the genome at specific DNA repetitive sequences, these secondary conformations present a distinctive challenge for progression of DNA replication forks. Impeding normal DNA synthesis, cruciforms, hairpins, H DNA, Z DNA and G4 DNA considerably impact the genome stability and in some instances play a causal role in disease development. Along with previously discovered dedicated DNA helicases, the specialized DNA polymerases emerge as major actors performing DNA synthesis through these distorted impediments. In their new role, they are facilitating DNA synthesis on replication stalling sites formed by non-B DNA structures and thereby helping the completion of DNA replication, a process otherwise crucial for preserving genome integrity and concluding normal cell division. This review summarizes the evidence gathered describing the function of specialized DNA polymerases in replicating DNA through non-B DNA structures.  相似文献   

20.
A transgenic perspective on plant functional genomics   总被引:17,自引:0,他引:17  
Transgenic crops are very much in the news due to the increasing public debate on their acceptance. In the scientific community though, transgenic plants are proving to be powerful tools to study various aspects of plant sciences. The emerging scientific revolution sparked by genomics based technologies is producing enormous amounts of DNA sequence information that, together with plant transformation methodology, is opening up new experimental opportunities for functional genomics analysis. An overview is provided here on the use of transgenic technology for the functional analysis of plant genes in model plants and a link made to their utilization in transgenic crops. In transgenic plants, insertional mutagenesis using heterologous maize transposons or Agrobacterium mediated T-DNA insertions, have been valuable tools for the identification and isolation of genes that display a mutant phenotype. To discover functions of genes that do not display phenotypes when mutated, insertion sequences have been engineered to monitor or change the expression pattern of adjacent genes. These gene detector insertions can detect adjacent promoters, enhancers or gene exons and precisely reflect the expression pattern of the tagged gene. Activation tag insertions can mis-express the adjacent gene and confer dominant phenotypes that help bridge the phenotype gap. Employment of various forms of gene silencing technology broadens the scope of recovering knockout phenotypes for genes with redundant function. All these transgenic strategies describing gene-phenotype relationships can be addressed by high throughput reverse genetics methods that will help provide functions to the genes discovered by genome sequencing. The gene functions discovered by insertional mutagenesis and silencing strategies along with expression pattern analysis will provide an integrated functional genomics perspective and offer unique applications in transgenic crops. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号